| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212 |
- # This file is part of TRS (http://math.kompiler.org)
- #
- # TRS is free software: you can redistribute it and/or modify it under the
- # terms of the GNU Affero General Public License as published by the Free
- # Software Foundation, either version 3 of the License, or (at your option) any
- # later version.
- #
- # TRS is distributed in the hope that it will be useful, but WITHOUT ANY
- # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
- # A PARTICULAR PURPOSE. See the GNU Affero General Public License for more
- # details.
- #
- # You should have received a copy of the GNU Affero General Public License
- # along with TRS. If not, see <http://www.gnu.org/licenses/>.
- from src.rules.integrals import indef, choose_constant, solve_integral, \
- match_solve_indef, solve_indef, match_integrate_variable_power, \
- integrate_variable_root, integrate_variable_exponent, \
- match_constant_integral, constant_integral, single_variable_integral, \
- match_factor_out_constant, factor_out_integral_negation, \
- factor_out_constant, match_division_integral, division_integral, \
- extend_division_integral, match_function_integral, \
- logarithm_integral, sinus_integral, cosinus_integral, \
- match_sum_rule_integral, sum_rule_integral, \
- match_remove_indef_constant, remove_indef_constant
- from src.node import Scope
- from src.possibilities import Possibility as P
- from tests.rulestestcase import RulesTestCase, tree
- class TestRulesIntegrals(RulesTestCase):
- def test_choose_constant(self):
- a, b, c = tree('A, B, C')
- self.assertEqual(choose_constant(tree('int x ^ n')), c)
- self.assertEqual(choose_constant(tree('int x ^ c')), a)
- self.assertEqual(choose_constant(tree('int a ^ c da')), b)
- def test_match_solve_indef(self):
- root = tree('[x ^ 2]_a^b')
- self.assertEqualPos(match_solve_indef(root), [P(root, solve_indef)])
- def test_solve_integral(self):
- root, F, Fc = tree('int x ^ 2 dx, 1 / 3 x ^ 3, 1 / 3 x ^ 3 + C')
- self.assertEqual(solve_integral(root, F), Fc)
- x2, x, a, b = root = tree('int_a^b x ^ 2 dx')
- self.assertEqual(solve_integral(root, F), indef(Fc, a, b))
- def test_solve_integral_skip_indef(self):
- root, x, C, l1 = tree('int_a^b y ^ x dy, x, C, 1')
- F = tree('1 / (x + 1)y ^ (x + 1)')
- y, a, b = root[1:4]
- Fx = lambda y: l1 / (x + 1) * y ** (x + 1) + C
- self.assertEqual(solve_integral(root, F), Fx(b) - Fx(a))
- def test_solve_indef(self):
- root, expect = tree('[x ^ 2]_a^b, b ^ 2 - a ^ 2')
- self.assertEqual(solve_indef(root, ()), expect)
- def test_match_integrate_variable_power(self):
- root = tree('int x ^ n')
- self.assertEqualPos(match_integrate_variable_power(root),
- [P(root, integrate_variable_root)])
- root = tree('int x ^ n')
- self.assertEqualPos(match_integrate_variable_power(root),
- [P(root, integrate_variable_root)])
- root = tree('int -x ^ n')
- self.assertEqualPos(match_integrate_variable_power(root), [])
- for root in tree('int g ^ x, int g ^ x'):
- self.assertEqualPos(match_integrate_variable_power(root),
- [P(root, integrate_variable_exponent)])
- def test_integrate_variable_root(self):
- root, expect = tree('int x ^ n, 1 / (n + 1) * x ^ (n + 1) + C')
- self.assertEqual(integrate_variable_root(root, ()), expect)
- def test_integrate_variable_exponent(self):
- root, expect = tree('int g ^ x, g ^ x / ln(g) + C')
- self.assertEqual(integrate_variable_exponent(root, ()), expect)
- def test_match_constant_integral(self):
- root = tree('int x dx')
- self.assertEqualPos(match_constant_integral(root),
- [P(root, single_variable_integral)])
- root = tree('int 2')
- self.assertEqualPos(match_constant_integral(root),
- [P(root, constant_integral)])
- root = tree('int c dx')
- self.assertEqualPos(match_constant_integral(root),
- [P(root, constant_integral)])
- def test_single_variable_integral(self):
- root, expect = tree('int x, int x ^ 1')
- self.assertEqual(single_variable_integral(root, ()), expect)
- def test_constant_integral(self):
- root, expect = tree('int 2, 2x + C')
- self.assertEqual(constant_integral(root, ()), expect)
- root, expect = tree('int_0^4 2, [2x + C]_0^4')
- self.assertEqual(constant_integral(root, ()), expect)
- def test_match_factor_out_constant(self):
- root, c, cx = tree('int cx dx, c, cx')
- self.assertEqualPos(match_factor_out_constant(root),
- [P(root, factor_out_constant, (Scope(cx), c))])
- root = tree('int -x2 dx')
- self.assertEqualPos(match_factor_out_constant(root),
- [P(root, factor_out_integral_negation)])
- def test_factor_out_integral_negation(self):
- root, expect = tree('int -x ^ 2 dx, -int x ^ 2 dx')
- self.assertEqual(factor_out_integral_negation(root, ()), expect)
- def test_factor_out_constant(self):
- root, expect = tree('int cx dx, c int x dx')
- c, x2 = cx2 = root[0]
- self.assertEqual(factor_out_constant(root, (Scope(cx2), c)), expect)
- def test_match_division_integral(self):
- root0, root1 = tree('int 1 / x, int 2 / x')
- self.assertEqualPos(match_division_integral(root0),
- [P(root0, division_integral)])
- self.assertEqualPos(match_division_integral(root1),
- [P(root1, extend_division_integral)])
- def test_division_integral(self):
- root, expect = tree('int 1 / x dx, ln|x| + C')
- self.assertEqual(division_integral(root, ()), expect)
- def test_extend_division_integral(self):
- root, expect = tree('int a / x dx, int a(1 / x) dx')
- self.assertEqual(extend_division_integral(root, ()), expect)
- def test_match_division_integral_chain(self):
- self.assertRewrite([
- 'int a / x',
- 'int a * 1 / x dx',
- 'aint 1 / x dx',
- 'a(ln|x| + C)',
- 'aln|x| + aC',
- # FIXME: 'aln|x| + C', # ac -> C
- ])
- def test_match_function_integral(self):
- root = tree('int ln x')
- self.assertEqualPos(match_function_integral(root),
- [P(root, logarithm_integral)])
- root = tree('int sin x')
- self.assertEqualPos(match_function_integral(root),
- [P(root, sinus_integral)])
- root = tree('int cos x')
- self.assertEqualPos(match_function_integral(root),
- [P(root, cosinus_integral)])
- root = tree('int sqrt x')
- self.assertEqualPos(match_function_integral(root), [])
- def test_logarithm_integral(self):
- root, expect = tree('int ln x, (xlnx - x) / ln e + C')
- self.assertEqual(logarithm_integral(root, ()), expect)
- def test_sinus_integral(self):
- root, expect = tree('int sin x, -cos x + C')
- self.assertEqual(sinus_integral(root, ()), expect)
- def test_cosinus_integral(self):
- root, expect = tree('int cos x, sin x + C')
- self.assertEqual(cosinus_integral(root, ()), expect)
- def test_match_sum_rule_integral(self):
- (f, g), x = root = tree('int 2x + 3x dx')
- self.assertEqualPos(match_sum_rule_integral(root),
- [P(root, sum_rule_integral, (Scope(root[0]), f))])
- ((f, g), h), x = root = tree('int 2x + 3x + 4x dx')
- self.assertEqualPos(match_sum_rule_integral(root),
- [P(root, sum_rule_integral, (Scope(root[0]), f)),
- P(root, sum_rule_integral, (Scope(root[0]), g)),
- P(root, sum_rule_integral, (Scope(root[0]), h))])
- def test_sum_rule_integral(self):
- ((f, g), h), x = root = tree('int 2x + 3x + 4x dx')
- self.assertEqual(sum_rule_integral(root, (Scope(root[0]), f)),
- tree('int 2x dx + int 3x + 4x dx'))
- self.assertEqual(sum_rule_integral(root, (Scope(root[0]), g)),
- tree('int 3x dx + int 2x + 4x dx'))
- self.assertEqual(sum_rule_integral(root, (Scope(root[0]), h)),
- tree('int 4x dx + int 2x + 3x dx'))
- def test_match_remove_indef_constant(self):
- Fx, a, b = root = tree('[2x + C]_a^b')
- self.assertEqualPos(match_remove_indef_constant(root),
- [P(root, remove_indef_constant, (Scope(Fx), Fx[1]))])
- Fx, a, b = root = tree('[2x + x]_a^b')
- self.assertEqualPos(match_remove_indef_constant(root), [])
- Fx, a, b = root = tree('[2x]_a^b')
- self.assertEqualPos(match_remove_indef_constant(root), [])
- def test_remove_indef_constant(self):
- root, e = tree('[2x + C]_a^b, [2x]_a^b')
- Fx = root[0]
- self.assertEqual(remove_indef_constant(root, (Scope(Fx), Fx[1])), e)
|