from src.rules.integrals import choose_constant, match_solve_indef, \ solve_indef, match_integrate_variable_power, integrate_variable_root, \ integrate_variable_exponent from src.rules.logarithmic import ln #from .goniometry import sin, cos from src.possibilities import Possibility as P from tests.rulestestcase import RulesTestCase, tree class TestRulesIntegrals(RulesTestCase): #def test_integral_params(self): # f, x = root = tree('int fx dx') # self.assertEqual(integral_params(root), (f, x)) # root = tree('int fx') # self.assertEqual(integral_params(root), (f, x)) # root = tree('int 3') # self.assertEqual(integral_params(root), (3, x)) def test_choose_constant(self): a, b, c = tree('a, b, c') self.assertEqual(choose_constant(tree('int x ^ n')), c) self.assertEqual(choose_constant(tree('int x ^ c')), a) self.assertEqual(choose_constant(tree('int a ^ c da')), b) def test_match_solve_indef(self): root = tree('[x ^ 2]_a^b') self.assertEqualPos(match_solve_indef(root), [P(root, solve_indef)]) def test_solve_indef(self): root, expect = tree('[x ^ 2]_a^b, b2 - a2') self.assertEqual(solve_indef(root, ()), expect) def test_match_integrate_variable_power(self): for root in tree('int x ^ n, int x ^ n'): self.assertEqualPos(match_integrate_variable_power(root), [P(root, integrate_variable_root)]) for root in tree('int g ^ x, int g ^ x'): self.assertEqualPos(match_integrate_variable_power(root), [P(root, integrate_variable_exponent)]) def test_integrate_variable_root(self): root, expect = tree('int x ^ n, x ^ (n + 1) / (n + 1) + c') self.assertEqual(integrate_variable_root(root, ()), expect) def test_integrate_variable_exponent(self): root, expect = tree('int g ^ x, g ^ x / ln(g) + c') self.assertEqual(integrate_variable_exponent(root, ()), expect)