# This file is part of TRS (http://math.kompiler.org) # # TRS is free software: you can redistribute it and/or modify it under the # terms of the GNU Affero General Public License as published by the Free # Software Foundation, either version 3 of the License, or (at your option) any # later version. # # TRS is distributed in the hope that it will be useful, but WITHOUT ANY # WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR # A PARTICULAR PURPOSE. See the GNU Affero General Public License for more # details. # # You should have received a copy of the GNU Affero General Public License # along with TRS. If not, see . from rulestestcase import RulesTestCase from src.validation import validate, VALIDATE_SUCCESS as OK, \ VALIDATE_FAILURE as FAIL, VALIDATE_NOPROGRESS as NP class TestValidation(RulesTestCase): def test_simple_success(self): self.assertValidateSuccess('3a + a', '4a') def test_simple_failure(self): self.assertValidateFailure('3a + a', '4a + 1') def test_intermediate_success(self): self.assertValidateSuccess('3a + a + b + 2b', '4a + 3b') self.assertValidateSuccess('a / b / (c / d)', '(ad) / (bc)') def test_intermediate_failure(self): self.assertValidateFailure('3a + a + b + 2b', '4a + 4b') def test_success(self): self.assertValidateSuccess('x^2 + x - 2x^2 + 3x + 1', 'x^2 + 4x - 2x^2 + 1') def test_indefinite_integral(self): self.assertValidateSuccess('int_2^4 x^2', '4^3/3 - 2^3/3') def test_advanced_failure(self): self.assertValidateFailure('(x-1)^3+(x-1)^3', '4a+4b') def test_sphere_volume(self): self.assertValidateSuccess('int_(-r)^(r) pi * (r^2 - x^2) dx', '4 / 3 * pi * r ^ 3') def test_sphere_volume_alternative_notation(self): self.assertValidateSuccess('int_(-r)^(r) pi * (r^2 - x^2) dx', '4 * pi * r ^ 3 / 3') def test_noprogress_simple(self): self.assertValidateNoprogress('2 + 2', '3 + 1')