from src.rules.logarithmic import log, ln, match_constant_logarithm, \ base_equals_raised, logarithm_of_one, divide_same_base, \ match_add_logarithms, add_logarithms, expand_negations, \ subtract_logarithms, match_raised_base, raised_base, \ match_factor_out_exponent, split_negative_exponent, \ factor_out_exponent, match_factor_in_multiplicant, \ factor_in_multiplicant from src.node import Scope from src.possibilities import Possibility as P from tests.rulestestcase import RulesTestCase, tree class TestRulesLogarithmic(RulesTestCase): def test_match_constant_logarithm(self): self.assertRaises(ValueError, tree, 'log_1(a)') root = tree('log 1') self.assertEqualPos(match_constant_logarithm(root), [P(root, logarithm_of_one)]) root = tree('log 10') self.assertEqualPos(match_constant_logarithm(root), [P(root, base_equals_raised), P(root, divide_same_base)]) root = tree('log(a, a)') self.assertEqualPos(match_constant_logarithm(root), [P(root, base_equals_raised), P(root, divide_same_base)]) def test_logarithm_of_one(self): root = tree('log 1') self.assertEqual(logarithm_of_one(root, ()), 0) def test_divide_same_base(self): root, l5, l6 = tree('log(5, 6), 5, 6') self.assertEqual(divide_same_base(root, ()), log(l5) / log(l6)) def test_match_add_logarithms(self): root = tree('log a + ln b') self.assertEqualPos(match_add_logarithms(root), []) log_a, log_b = root = tree('log a + log b') self.assertEqualPos(match_add_logarithms(root), [P(root, add_logarithms, (Scope(root), log_a, log_b))]) log_a, log_b = root = tree('-log a - log b') self.assertEqualPos(match_add_logarithms(root), [P(root, expand_negations, (Scope(root), log_a, log_b))]) log_a, log_b = root = tree('log a - log b') self.assertEqualPos(match_add_logarithms(root), [P(root, subtract_logarithms, (Scope(root), log_a, log_b))]) log_a, log_b = root = tree('-log a + log b') self.assertEqualPos(match_add_logarithms(root), [P(root, subtract_logarithms, (Scope(root), log_b, log_a))]) def test_add_logarithms(self): root, expect = tree('log a + log b, log(ab)') log_a, log_b = root self.assertEqual(add_logarithms(root, (Scope(root), log_a, log_b)), expect) def test_expand_negations(self): root, expect = tree('-log(a) - log(b), -(log(a) + log(b))') log_a, log_b = root self.assertEqual(expand_negations(root, (Scope(root), log_a, log_b)), expect) def test_subtract_logarithms(self): root, expect = tree('log(a) - log(b), log(a / b)') loga, logb = root self.assertEqual(subtract_logarithms(root, (Scope(root), loga, logb)), expect) root, expect = tree('-log(a) + log(b), log(b / a)') loga, logb = root self.assertEqual(subtract_logarithms(root, (Scope(root), logb, loga)), expect) def test_match_raised_base(self): root, a = tree('2 ^ log_2(a), a') self.assertEqualPos(match_raised_base(root), [P(root, raised_base, (a,))]) root, a = tree('e ^ ln(a), a') self.assertEqualPos(match_raised_base(root), [P(root, raised_base, (a,))]) root = tree('2 ^ log_3(a)') self.assertEqualPos(match_raised_base(root), []) def test_raised_base(self): root, a = tree('2 ^ log_2(a), a') self.assertEqual(raised_base(root, (root[1][0],)), a) def test_match_factor_out_exponent(self): for root in tree('log(a ^ 2), log(2 ^ a), log(a ^ a), log(2 ^ 2)'): self.assertEqualPos(match_factor_out_exponent(root), [P(root, factor_out_exponent)]) root = tree('log(a ^ -b)') self.assertEqualPos(match_factor_out_exponent(root), [P(root, split_negative_exponent), P(root, factor_out_exponent)]) def test_split_negative_exponent(self): root, expect = tree('log(a ^ -b), log((a ^ b) ^ -1)') self.assertEqual(split_negative_exponent(root, ()), expect) def test_factor_out_exponent(self): ((a, l2), l10) = root = tree('log(a ^ 2)') self.assertEqual(factor_out_exponent(root, ()), l2 * log(a)) def test_match_factor_in_multiplicant(self): (l2, log_3) = root = tree('2log(3)') self.assertEqualPos(match_factor_in_multiplicant(root), [P(root, factor_in_multiplicant, (Scope(root), l2, log_3))]) (l2, log_3), l4 = root = tree('2log(3)4') self.assertEqualPos(match_factor_in_multiplicant(root), [P(root, factor_in_multiplicant, (Scope(root), l2, log_3)), P(root, factor_in_multiplicant, (Scope(root), l4, log_3))]) root = tree('2log(a)') self.assertEqualPos(match_factor_in_multiplicant(root), []) root = tree('alog(3)') self.assertEqualPos(match_factor_in_multiplicant(root), []) def test_factor_in_multiplicant(self): root, expect = tree('2log(3), log(3 ^ 2)') l2, log3 = root self.assertEqual(factor_in_multiplicant(root, (Scope(root), l2, log3)), expect)