import unittest from src.rules.poly import match_combine_polynomes, combine_polynomes, \ combine_numerics from src.possibilities import Possibility as P from src.parser import Parser from tests.parser import ParserWrapper def tree(exp, **kwargs): return ParserWrapper(Parser, **kwargs).run([exp]) class TestRulesPoly(unittest.TestCase): def assertEqualPos(self, possibilities, expected): self.assertEqual(len(possibilities), len(expected)) for p, e in zip(possibilities, expected): self.assertEqual(p.root, e.root) for pair in zip(p.args, e.args): self.assertEqual(*pair) self.assertEqual(p, e) def test_numbers(self): return # TODO: Move to combine numeric test l1, l2 = root = tree('1+2') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_numerics, ((l1, (l1, l1, l1)), (l2, (l1, l2, l1))))]) def test_identifiers_basic(self): a1, a2 = root = tree('a+a') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (a1, a2, 1, 1, 'a', 1))]) def test_identifiers_normal(self): a1, a2 = root = tree('a+2a') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (a1, a2, 1, 2, 'a', 1))]) def test_identifiers_reverse(self): return # TODO: Move to normalisation test a1, a2 = root = tree('a+a*2') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (a1, a2, 1, 2, a1, 1))]) def test_identifiers_exponent(self): a1, a2 = root = tree('a2+a2') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (a1, a2, 1, 1, 'a', 2))]) def test_identifiers_coeff_exponent_left(self): a1, a2 = root = tree('2a3+a3') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (a1, a2, 2, 1, 'a', 3))]) def test_identifiers_coeff_exponent_both(self): a1, a2 = root = tree('2a3+2a3') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (a1, a2, 2, 2, 'a', 3))]) def test_basic_subexpressions(self): a_b, c, d = tree('a+b,c,d') left, right = root = tree('(a+b)^d + (a+b)^d') self.assertEqual(left, right) possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (left, right, 1, 1, a_b, d))]) left, right = root = tree('5(a+b)^d + 7(a+b)^d') possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, (left, right, 5, 7, a_b, d))]) # TODO: Move to other strategy #left, right = root = tree('c(a+b)^d + c(a+b)^d') #self.assertEqual(left, right) #possibilities = match_combine_polynomes(root) #self.assertEqualPos(possibilities, # [P(root, combine_polynomes, (left, right, c, c, a_b, d))]) def test_match_combine_polynomes_numeric_combinations(self): return root = tree('0+1+2') # TODO: this test fails with this code: l0, l1, l2 = tree('0,1,2') l0, l1, l2 = root[0][0], root[0][1], root[1] possibilities = match_combine_polynomes(root) self.assertEqualPos(possibilities, [P(root, combine_polynomes, ((l0, (l1, l0, l1)), (l1, (l1, l1, l1)))), P(root, combine_polynomes, ((l0, (l1, l0, l1)), (l2, (l1, l2, l1)))), P(root, combine_polynomes, ((l1, (l1, l1, l1)), (l2, (l1, l2, l1))))])