|
@@ -219,12 +219,29 @@ class TestNode(RulesTestCase):
|
|
|
self.assertTrue(ln0.contains(a))
|
|
self.assertTrue(ln0.contains(a))
|
|
|
self.assertFalse(ln1.contains(a))
|
|
self.assertFalse(ln1.contains(a))
|
|
|
|
|
|
|
|
- def test_construct_function(self):
|
|
|
|
|
|
|
+ def test_construct_function_derivative(self):
|
|
|
self.assertEqual(str(tree('der(x ^ 2)')), '[x ^ 2]\'')
|
|
self.assertEqual(str(tree('der(x ^ 2)')), '[x ^ 2]\'')
|
|
|
self.assertEqual(str(tree('der(der(x ^ 2))')), '[x ^ 2]\'\'')
|
|
self.assertEqual(str(tree('der(der(x ^ 2))')), '[x ^ 2]\'\'')
|
|
|
self.assertEqual(str(tree('der(x ^ 2, x)')), 'd/dx (x ^ 2)')
|
|
self.assertEqual(str(tree('der(x ^ 2, x)')), 'd/dx (x ^ 2)')
|
|
|
|
|
|
|
|
|
|
+ def test_construct_function_logarithm(self):
|
|
|
self.assertEqual(str(tree('log(x, e)')), 'ln(x)')
|
|
self.assertEqual(str(tree('log(x, e)')), 'ln(x)')
|
|
|
self.assertEqual(str(tree('log(x, 10)')), 'log(x)')
|
|
self.assertEqual(str(tree('log(x, 10)')), 'log(x)')
|
|
|
self.assertEqual(str(tree('log(x, 2)')), 'log_2(x)')
|
|
self.assertEqual(str(tree('log(x, 2)')), 'log_2(x)')
|
|
|
self.assertEqual(str(tree('log(x, g)')), 'log(x, g)')
|
|
self.assertEqual(str(tree('log(x, g)')), 'log(x, g)')
|
|
|
|
|
+
|
|
|
|
|
+ def test_construct_function_integral(self):
|
|
|
|
|
+ self.assertEqual(str(tree('int x ^ 2')), 'int x ^ 2 dx')
|
|
|
|
|
+ self.assertEqual(str(tree('int x ^ 2 dx')), 'int x ^ 2 dx')
|
|
|
|
|
+ self.assertEqual(str(tree('int x ^ 2 dy')), 'int x ^ 2 dy')
|
|
|
|
|
+ self.assertEqual(str(tree('int x ^ 2 dy')), 'int x ^ 2 dy')
|
|
|
|
|
+ self.assertEqual(str(tree('int x + 1')), 'int (x + 1) dx')
|
|
|
|
|
+
|
|
|
|
|
+ self.assertEqual(str(tree('int_a^b x ^ 2')), 'int_a^b x ^ 2 dx')
|
|
|
|
|
+ self.assertEqual(str(tree('int_(a-b)^(a+b) x ^ 2')),
|
|
|
|
|
+ 'int_(a - b)^(a + b) x ^ 2 dx')
|
|
|
|
|
+
|
|
|
|
|
+ def test_construct_function_indef(self):
|
|
|
|
|
+ self.assertEqual(str(tree('[x ^ 2]_a^b')), '[x ^ 2]_a^b')
|
|
|
|
|
+ self.assertEqual(str(tree('[x ^ 2]_(a-b)^(a+b)')),
|
|
|
|
|
+ '[x ^ 2]_(a - b)^(a + b)')
|