|
|
@@ -96,7 +96,19 @@ class TestRulesNumerics(RulesTestCase):
|
|
|
a * 6 * b)
|
|
|
|
|
|
def test_multiply_numerics_negation(self):
|
|
|
- #a, b = root = tree('1 - 5 * -3x - 5 * 6')
|
|
|
- l1, l2 = tree('-1 * 2')
|
|
|
-
|
|
|
- self.assertEqual(multiply_numerics(l1 * l2, (l1, l2, -1, 2)), -l2)
|
|
|
+ l1_neg, l2 = root = tree('-1 * 2')
|
|
|
+ self.assertEqualNodes(multiply_numerics(root, (l1_neg, l2, -1, 2)), -l2)
|
|
|
+
|
|
|
+ root, l6 = tree('1 - 2 * 3,6')
|
|
|
+ l1, neg = root
|
|
|
+ l2, l3 = mul = neg[0]
|
|
|
+ self.assertEqualNodes(multiply_numerics(mul, (l2, l3, 2, 3)), l6)
|
|
|
+
|
|
|
+ l1, mul = root = tree('1 + -2 * 3')
|
|
|
+ l2_neg, l3 = mul
|
|
|
+ self.assertEqualNodes(multiply_numerics(mul, (l2_neg, l3, -2, 3)), -l6)
|
|
|
+
|
|
|
+ root, l30 = tree('-5 * x ^ 2 - -15x - 5 * 6,30')
|
|
|
+ rest, mul_neg = root
|
|
|
+ l5_neg, l6 = mul = mul_neg[0]
|
|
|
+ self.assertEqualNodes(multiply_numerics(mul, (l5_neg, l6, 5, 6)), l30)
|