Commit 2bc65876 authored by Sander Mathijs van Veen's avatar Sander Mathijs van Veen

Merge branch 'master' of kompiler.org:trs

parents 073810b9 2304214e
# vim: set fileencoding=utf-8 :
- Fix BisonSyntaxError location tracking.
- Sort polynom by its exponents?
- No possibilities found for:
>>> a2b3 + a2b3
a ^ 2 * b ^ 3 + a ^ 2 * b ^ 3
- 2 + 3 + 4 rewrites to 5 instead of 5 + 4
-> the problem is that the 'root' of the application is actually a subtree
of the entire expression. This means that the parent of each possibility
root (or 'subtree') must me stored to be able to replace the subtree.
- MESSAGES needs to be expanded.
- rewrite match_combine_polynomes to an even more generic form:
match_combine_factors.
- "--ab + c" has no rewrite possibility. The graph of "--ab + c" is also
not valid:
-
+
╭─┴╮
* c
╭┴╮
- b
a
- The following expression gives a cycle in the possibilities:
>>> ab + ba
possibilities:
Group "ab" is multiplied by 1 and 1, combine them.
>>> (1 + 1) * ab
(1 + 1)ab
possibilities:
Combine the constants 1 and 1.
Group "1" is multiplied by 1 and 1, combine them.
Expand a(1 + 1).
Expand b(1 + 1).
- Fix division by zero caused by "0/0".
- Fix division by zero caused by "0/0": Catch exception in front-end
smvv@multivac ~/work/trs $ printf "a/0\n??" | ./main.py
Traceback (most recent call last):
......@@ -84,3 +48,56 @@ smvv@multivac ~/work/trs $ printf "0/1\n??" | ./main.py
<Possibility root="0 / 1" handler=divide_numerics args=(0, 1)>
Division of 0 by 1 reduces to 0.
Division of 0 by 1 reduces to 0.
- Fractions constant rewrite rules.
- >>> (sin x) ^ 2 + (cos x) ^ 2
sin(x) ^ 2 + cos(x) ^ 2
>>> sin(x) ^ 2 + cos(x) ^ 2
sin(x ^ 2) + cos(x ^ 2)
- ExpressionNode.equals() werkend maken voor alle cases (negatie).
- validation: preorder traversal implementatie vergelijken met andere
implementaties.
- Fix the following loop using strategy (reduce_fraction_constants):
>>> 2 / 7 - 4 / 11
2 / 7 - 4 / 11
>>> @
22 / 77 - 28 / 77
>>> @
2 / 7 - 28 / 77
>>> @
2 / 7 + 4 / 11
- Cancel terms before multiplying constants: (3 * ...) / (3 * ...) -> ... / ...
>>> (7/3)*(3/5)
7 / 3 * (3 / 5)
>>> ??
Expand fraction with nominator greater than denominator 7 / 3 to an integer
plus a fraction.
Multiply fractions 7 / 3 and 3 / 5.
>>> @
7 * 3 / (3 * 5)
>>> ?
Multiply constant 7 with 3.
>>> @
21 / (3 * 5)
>>> @
21 / 15
>>> @
7 / 5
- filter_duplicates does not seem to work anymore...
- Fix error while parsing unicode PI:
>>> sin(1/2 * pi)
sin(1 / 2 * π)
>>> @
unknown char � ignored.
unknown char � ignored.
ERROR: 41.7-41.8: "syntax error, unexpected TIMES" near "*".
ERROR: 41.14-41.15: "syntax error, unexpected RPAREN" near ")".
- No matches for sin(pi), sin(2pi), sin(4pi), etc...
graph_drawing @ bb3c5d23
Subproject commit 11940973bdfef9432438b054c65b28af2eb97d0c
Subproject commit bb3c5d23dc2a15e0e634f72b1ca48e5b22817642
......@@ -9,6 +9,8 @@ from graph_drawing.graph import generate_graph
from graph_drawing.line import generate_line
from graph_drawing.node import Node, Leaf
from unicode_math import PI as u_PI
TYPE_OPERATOR = 1
TYPE_IDENTIFIER = 2
......@@ -29,9 +31,24 @@ OP_MOD = 7
# N-ary (functions)
OP_INT = 8
OP_EXPAND = 9
OP_COMMA = 10
OP_SQRT = 11
OP_COMMA = 9
OP_SQRT = 10
# Goniometry
OP_SIN = 11
OP_COS = 12
OP_TAN = 13
OP_SOLVE = 14
OP_EQ = 15
OP_POSSIBILITIES = 16
OP_HINT = 17
OP_REWRITE_ALL = 18
OP_REWRITE = 19
# Special identifierd
PI = 'pi'
TYPE_MAP = {
......@@ -41,17 +58,43 @@ TYPE_MAP = {
}
OP_MAP = {
',': OP_COMMA,
'+': OP_ADD,
# Either substraction or negation. Skip the operator sign in 'x' (= 2).
'-': lambda x: OP_SUB if len(x) > 2 else OP_NEG,
'-': OP_SUB,
'*': OP_MUL,
'/': OP_DIV,
'^': OP_POW,
'mod': OP_MOD,
'int': OP_INT,
'expand': OP_EXPAND,
'sin': OP_SIN,
'cos': OP_COS,
'tan': OP_TAN,
'sqrt': OP_SQRT,
',': OP_COMMA,
'int': OP_INT,
'solve': OP_SOLVE,
'=': OP_EQ,
'??': OP_POSSIBILITIES,
'?': OP_HINT,
'@@': OP_REWRITE_ALL,
'@': OP_REWRITE,
}
TOKEN_MAP = {
OP_COMMA: 'COMMA',
OP_ADD: 'PLUS',
OP_SUB: 'MINUS',
OP_MUL: 'TIMES',
OP_DIV: 'DIVIDE',
OP_POW: 'POW',
OP_SQRT: 'FUNCTION',
OP_SIN: 'FUNCTION',
OP_COS: 'FUNCTION',
OP_TAN: 'FUNCTION',
OP_INT: 'FUNCTION',
OP_SOLVE: 'FUNCTION',
OP_EQ: 'EQ',
OP_POSSIBILITIES: 'POSSIBILITIES',
OP_HINT: 'HINT',
OP_REWRITE_ALL: 'REWRITE_ALL',
OP_REWRITE: 'REWRITE',
}
......@@ -60,6 +103,10 @@ def to_expression(obj):
class ExpressionBase(object):
def __init__(self, *args, **kwargs):
self.negated = 0
def clone(self):
return copy.deepcopy(self)
......@@ -86,16 +133,11 @@ class ExpressionBase(object):
if self.is_leaf:
if other.is_leaf:
# Both are leafs, string compare the value.
return str(self.value) < str(other.value)
# Self is a leaf, thus has less value than an expression node.
return True
self_value = '-' * (self.negated & 1) + str(self.value)
other_value = '-' * (other.negated & 1) + str(other.value)
return self_value < other_value
if self.is_op(OP_NEG) and self[0].is_leaf:
if other.is_leaf:
# Both are leafs, string compare the value.
return ('-' + str(self.value)) < str(other.value)
if other.is_op(OP_NEG) and other[0].is_leaf:
return ('-' + str(self.value)) < ('-' + str(other.value))
# Self is a leaf, thus has less value than an expression node.
return True
......@@ -113,26 +155,11 @@ class ExpressionBase(object):
def is_op(self, op):
return not self.is_leaf and self.op == op
def is_op_or_negated(self, op):
if self.is_leaf:
return False
if self.op == OP_NEG:
return self[0].is_op(op)
return self.op == op
def is_leaf_or_negated(self):
if self.is_leaf:
return True
if self.is_op(OP_NEG):
return self[0].is_leaf
def is_power(self, exponent=None):
if self.is_leaf or self.op != OP_POW:
return False
def is_power(self):
return not self.is_leaf and self.op == OP_POW
return exponent == None or self[1] == exponent
def is_nary(self):
return not self.is_leaf and self.op in [OP_ADD, OP_SUB, OP_MUL]
......@@ -164,8 +191,18 @@ class ExpressionBase(object):
def __pow__(self, other):
return ExpressionNode('^', self, to_expression(other))
def __neg__(self):
return ExpressionNode('-', self)
def __pos__(self):
return self.reduce_negation()
def reduce_negation(self, n=1):
"""Remove n negation flags from the node."""
assert self.negated
return self.negate(-n)
def negate(self, n=1):
"""Negate the node n times."""
return negate(self, self.negated + n)
class ExpressionNode(Node, ExpressionBase):
......@@ -174,9 +211,6 @@ class ExpressionNode(Node, ExpressionBase):
self.type = TYPE_OPERATOR
self.op = OP_MAP[args[0]]
if hasattr(self.op, '__call__'):
self.op = self.op(args)
def __str__(self): # pragma: nocover
return generate_line(self)
......@@ -184,10 +218,8 @@ class ExpressionNode(Node, ExpressionBase):
"""
Check strict equivalence.
"""
if isinstance(other, ExpressionNode):
return self.op == other.op and self.nodes == other.nodes
return False
return isinstance(other, ExpressionNode) and self.op == other.op \
and self.negated == other.negated and self.nodes == other.nodes
def substitute(self, old_child, new_child):
self.nodes[self.nodes.index(old_child)] = new_child
......@@ -226,8 +258,10 @@ class ExpressionNode(Node, ExpressionBase):
return (ExpressionLeaf(1), self[0], self[1])
# rule: -r -> (1, r, 1)
if self.is_op(OP_NEG):
return (ExpressionLeaf(1), -self[0], ExpressionLeaf(1))
# rule: --r -> (1, r, 1)
# rule: ---r -> (1, r, 1)
if self.negated:
return (ExpressionLeaf(1), self, ExpressionLeaf(1))
if self.op != OP_MUL:
return
......@@ -257,7 +291,7 @@ class ExpressionNode(Node, ExpressionBase):
return (self[0], self[1], ExpressionLeaf(1))
return (self[1], self[0], ExpressionLeaf(1))
def equals(self, other):
def equals(self, other, ignore_negation=False):
"""
Perform a non-strict equivalence check between two nodes:
- If the other node is a leaf, it cannot be equal to this node.
......@@ -268,18 +302,14 @@ class ExpressionNode(Node, ExpressionBase):
- If both nodes are divisions, the nominator and denominator have to be
non-strictly equal.
"""
if not other.is_op(self.op):
# FIXME: this is if-clause is a problem. To fix this problem
# permanently, normalize ("x * -1" -> "-1x") before comparing to
# the other node.
if not isinstance(other, ExpressionNode) or other.op != self.op:
return False
if self.op in (OP_ADD, OP_MUL):
s0 = Scope(self)
s1 = set(Scope(other))
# Scopes sould be of equal size
# Scopes should be of equal size
if len(s0) != len(s1):
return False
......@@ -303,13 +333,15 @@ class ExpressionNode(Node, ExpressionBase):
if not child.equals(other[i]):
return False
if ignore_negation:
return True
return self.negated == other.negated
class ExpressionLeaf(Leaf, ExpressionBase):
def __init__(self, *args, **kwargs):
super(ExpressionLeaf, self).__init__(*args, **kwargs)
self.type = TYPE_MAP[type(args[0])]
def __eq__(self, other):
......@@ -319,15 +351,41 @@ class ExpressionLeaf(Leaf, ExpressionBase):
other_type = type(other)
if other_type in TYPE_MAP:
return TYPE_MAP[other_type] == self.type and self.value == other
return TYPE_MAP[other_type] == self.type \
and self.actual_value() == other
return self.negated == other.negated and self.type == other.type \
and self.value == other.value
def __str__(self):
val = str(self.value)
# Replace PI leaf by the Greek character
if val == PI:
val = u_PI
return '-' * self.negated + val
return other.type == self.type and self.value == other.value
def __repr__(self):
return str(self)
def equals(self, other):
def equals(self, other, ignore_negation=False):
"""
Check non-strict equivalence.
Between leaves, this is the same as strict equivalence.
Between leaves, this is the same as strict equivalence, except when
negations must be ignored.
"""
if ignore_negation:
other_type = type(other)
if other_type in (int, float):
return TYPE_MAP[other_type] == self.type \
and self.value == abs(other)
elif other_type == str:
return self.type == TYPE_IDENTIFIER and self.value == other
return self.type == other.type and self.value == other.value
else:
return self == other
def extract_polynome_properties(self):
......@@ -339,6 +397,11 @@ class ExpressionLeaf(Leaf, ExpressionBase):
# rule: 1 * r ^ 1 -> (1, r, 1)
return (ExpressionLeaf(1), self, ExpressionLeaf(1))
def actual_value(self):
assert self.is_numeric()
return (1 - 2 * (self.negated & 1)) * self.value
class Scope(object):
......@@ -358,7 +421,14 @@ class Scope(object):
def __iter__(self):
return iter(self.nodes)
def remove(self, node, replacement=None):
def __eq__(self, other):
return isinstance(other, Scope) and self.node == other.node \
and self.nodes == other.nodes
def __repr__(self):
return '<Scope of "%s">' % repr(self.node)
def remove(self, node, **kwargs):
if node.is_leaf:
node_cmp = hash(node)
else:
......@@ -371,8 +441,8 @@ class Scope(object):
n_cmp = n
if n_cmp == node_cmp:
if replacement != None:
self[i] = replacement
if 'replacement' in kwargs:
self[i] = kwargs['replacement']
else:
del self.nodes[i]
......@@ -381,8 +451,11 @@ class Scope(object):
raise ValueError('Node "%s" is not in the scope of "%s".'
% (node, self.node))
def replace(self, node, replacement):
self.remove(node, replacement=replacement)
def as_nary_node(self):
return nary_node(self.node.value, self.nodes)
return nary_node(self.node.value, self.nodes).negate(self.node.negated)
def nary_node(operator, scope):
......@@ -409,3 +482,13 @@ def get_scope(node):
scope.append(child)
return scope
def negate(node, n=1):
"""Negate the given node n times."""
assert n >= 0
new_node = node.clone()
new_node.negated = n
return new_node
......@@ -3,8 +3,6 @@ This parser will parse the given input and build an expression tree. Grammar
file for the supported mathematical expressions.
"""
from node import ExpressionNode as Node, ExpressionLeaf as Leaf
import os.path
PYBISON_BUILD = os.path.realpath('build/external/pybison')
EXTERNAL_MODS = os.path.realpath('external')
......@@ -16,9 +14,11 @@ sys.path.insert(1, EXTERNAL_MODS)
from pybison import BisonParser, BisonSyntaxError
from graph_drawing.graph import generate_graph
from node import TYPE_OPERATOR, OP_COMMA
from node import ExpressionNode as Node, ExpressionLeaf as Leaf, OP_MAP, \
TOKEN_MAP, TYPE_OPERATOR, OP_COMMA, OP_NEG, OP_MUL, OP_DIV, Scope, PI
from rules import RULES
from possibilities import filter_duplicates, pick_suggestion, apply_suggestion
from strategy import pick_suggestion
from possibilities import filter_duplicates, apply_suggestion
import Queue
......@@ -44,6 +44,10 @@ class Parser(BisonParser):
docstrings. Scanner rules are in the 'lexscript' attribute.
"""
# Words to be ignored by preprocessor
words = zip(*filter(lambda (s, op): TOKEN_MAP[op] == 'FUNCTION', \
OP_MAP.iteritems()))[0] + ('raise', 'graph', PI)
# Output directory of generated pybison files, including a trailing slash.
buildDirectory = PYBISON_BUILD + '/'
......@@ -52,10 +56,9 @@ class Parser(BisonParser):
# ----------------------------------------------------------------
# TODO: add a runtime check to verify that this token list match the list
# of tokens of the lex script.
tokens = ['NUMBER', 'IDENTIFIER', 'POSSIBILITIES',
'PLUS', 'MINUS', 'TIMES', 'DIVIDE', 'POW',
'LPAREN', 'RPAREN', 'COMMA', 'HINT', 'REWRITE',
'NEWLINE', 'QUIT', 'RAISE', 'GRAPH', 'SQRT']
tokens = ['NUMBER', 'IDENTIFIER', 'NEWLINE', 'QUIT', 'RAISE', 'GRAPH',
'LPAREN', 'RPAREN', 'FUNCTION'] \
+ filter(lambda t: t != 'FUNCTION', TOKEN_MAP.values())
# ------------------------------
# precedences
......@@ -64,8 +67,11 @@ class Parser(BisonParser):
('left', ('COMMA', )),
('left', ('MINUS', 'PLUS')),
('left', ('TIMES', 'DIVIDE')),
('left', ('EQ', )),
('left', ('NEG', )),
('right', ('POW', )),
('right', ('FUNCTION', )),
#('right', ('SIN', 'COS', 'TAN', 'SOLVE', 'INT', 'SQRT')),
)
interactive = 0
......@@ -74,13 +80,20 @@ class Parser(BisonParser):
BisonParser.__init__(self, **kwargs)
self.interactive = kwargs.get('interactive', 0)
self.timeout = kwargs.get('timeout', 0)
self.possibilities = self.last_possibilities = []
self.reset()
def reset(self):
self.read_buffer = ''
self.read_queue = Queue.Queue()
self.subtree_map = {}
#self.subtree_map = {}
self.root_node = None
self.possibilities = self.last_possibilities = []
def run(self, *args, **kwargs):
self.reset()
return super(Parser, self).run(*args, **kwargs)
# Override default read method with a version that prompts for input.
def read(self, nbytes):
......@@ -106,13 +119,13 @@ class Parser(BisonParser):
def hook_read_before(self):
if self.possibilities:
if self.interactive: # pragma: nocover
if self.verbose: # pragma: nocover
print 'possibilities:'
items = filter_duplicates(self.possibilities)
self.last_possibilities = self.possibilities
if self.interactive: # pragma: nocover
if self.verbose: # pragma: nocover
print ' ' + '\n '.join(map(str, items))
def hook_read_after(self, data):
......@@ -150,7 +163,7 @@ class Parser(BisonParser):
left, right = filter(None, match.groups())
# Filter words (otherwise they will be preprocessed as well)
if left + right in ['graph', 'raise']:
if left + right in Parser.words:
return left + right
# If all characters on the right are numbers. e.g. "a4", the
......@@ -163,6 +176,9 @@ class Parser(BisonParser):
# match: ab | abc | abcd (where left = "a")
return '*'.join([left] + list(right))
if self.verbose: # pragma: nocover
data_before = data
# Iteratively replace all matches.
while True:
data_after = re.sub(pattern, preprocess_data, data)
......@@ -170,41 +186,32 @@ class Parser(BisonParser):
if data == data_after:
break
if self.verbose: # pragma: nocover
print 'hook_read_after() modified the input data:'
print 'before:', data.replace('\n', '\\n')
print 'after :', data_after.replace('\n', '\\n')
data = data_after
if self.verbose and data_before != data_after: # pragma: nocover
print 'hook_read_after() modified the input data:'
print 'before:', repr(data_before)
print 'after :', repr(data_after)
return data
def hook_handler(self, target, option, names, values, retval):
if target in ['exp', 'line', 'input'] or not retval \
or retval.type != TYPE_OPERATOR:
if target in ['exp', 'line', 'input'] or not retval:
return retval
if self.subtree_map:
# Update the subtree map to let the subtree point to its parent
# node.
parent_nodes = self.subtree_map.keys()
for child in retval:
if child in parent_nodes:
self.subtree_map[child] = retval
if retval.op not in RULES:
if not retval.negated and retval.type != TYPE_OPERATOR:
return retval
for handler in RULES[retval.op]:
possibilities = handler(retval)
if retval.type == TYPE_OPERATOR and retval.op in RULES:
handlers = RULES[retval.op]
else:
handlers = []
# Record the subtree root node in order to avoid tree traversal.
# At this moment, the node is the root node since the expression is
# parser using the left-innermost parsing strategy.
for p in possibilities:
self.subtree_map[p.root] = None
if retval.negated:
handlers = RULES[OP_NEG]
for handler in handlers:
possibilities = handler(retval)
self.possibilities.extend(possibilities)
return retval
......@@ -213,6 +220,7 @@ class Parser(BisonParser):
print pick_suggestion(self.last_possibilities)
def display_possibilities(self):
if self.last_possibilities:
print '\n'.join(map(str, self.last_possibilities))
def rewrite(self):
......@@ -224,8 +232,7 @@ class Parser(BisonParser):
if not suggestion:
return self.root_node
expression = apply_suggestion(self.root_node, self.subtree_map,
suggestion)
expression = apply_suggestion(self.root_node, suggestion)
if self.verbose:
print 'After application, expression=', expression
......@@ -254,6 +261,7 @@ class Parser(BisonParser):
"""
input :
| input line
| input REWRITE NEWLINE
"""
if option == 1:
# Interactive mode is enabled if the term rewriting system is used
......@@ -264,6 +272,10 @@ class Parser(BisonParser):
return values[1]
if option == 2: # rule: input REWRITE NEWLINE
self.root_node = self.rewrite()
return self.root_node
def on_line(self, target, option, names, values):
"""
line : NEWLINE
......@@ -271,11 +283,17 @@ class Parser(BisonParser):
| debug NEWLINE
| HINT NEWLINE
| POSSIBILITIES NEWLINE
| REWRITE NEWLINE
| RAISE NEWLINE
"""
if option == 1: # rule: EXP NEWLINE
self.root_node = values[0]
# Clear list of last possibilities when current expression has no
# possibilities. Otherwise, an invalid expression gets the last
# possibilities of a valid expression.
if not self.possibilities:
self.last_possibilities = []
return values[0]
if option == 2: # rule: DEBUG NEWLINE
......@@ -290,11 +308,7 @@ class Parser(BisonParser):
self.display_possibilities()
return
if option == 5: # rule: REWRITE NEWLINE
self.root_node = self.rewrite()
return self.root_node
if option == 6:
if option == 5:
raise RuntimeError('on_line: exception raised')
def on_debug(self, target, option, names, values):
......@@ -340,10 +354,25 @@ class Parser(BisonParser):
def on_unary(self, target, option, names, values):
"""
unary : MINUS exp %prec NEG
| FUNCTION exp
"""
if option == 0: # rule: NEG exp
return Node('-', values[1])
node = values[1]
# Add negation to the left-most child
if node.is_leaf or (node.op != OP_MUL and node.op != OP_DIV):
node.negated += 1
else:
child = Scope(node)[0]
child.negated += 1
return node
if option == 1: # rule: FUNCTION exp
if values[1].is_op(OP_COMMA):
return Node(values[0], *values[1])
return Node(*values)
raise BisonSyntaxError('Unsupported option %d in target "%s".'
% (option, target)) # pragma: nocover
......@@ -354,19 +383,27 @@ class Parser(BisonParser):
| exp TIMES exp
| exp DIVIDE exp
| exp POW exp
| exp EQ exp
| exp MINUS exp
"""
if 0 <= option < 4: # rule: exp {PLUS,TIMES,DIVIDES,POW} exp
if 0 <= option < 5: # rule: exp {PLUS,TIMES,DIVIDES,POW,EQ} exp
return Node(values[1], values[0], values[2])
if option == 4: # rule: exp MINUS exp
# It is necessary to call the hook_handler here explicitly, since
# the minus operator is internally represented as two nodes (unary
# negation and binary plus).
node = Node('-', values[2])
node = self.hook_handler(target, option, names, values, node)
return Node('+', values[0], node)
if option == 5: # rule: exp MINUS exp
node = values[2]
# Add negation to the left-most child
if node.is_leaf or (node.op != OP_MUL and node.op != OP_DIV):
node.negated += 1
else:
node = Scope(node)[0]
node.negated += 1
# Explicit call the hook handler on the created unary negation.
node = self.hook_handler('binary', 4, names, values, node)
return Node('+', values[0], values[2])
raise BisonSyntaxError('Unsupported option %d in target "%s".'
% (option, target)) # pragma: nocover
......@@ -382,6 +419,25 @@ class Parser(BisonParser):
raise BisonSyntaxError('Unsupported option %d in target "%s".'
% (option, target)) # pragma: nocover
# -----------------------------------------
# PI and operator tokens
# -----------------------------------------
operators = '"%s"%s{ returntoken(IDENTIFIER); }\n' \
% (PI, ' ' * (8 - len(PI)))
functions = []
for op_str, op in OP_MAP.iteritems():
if TOKEN_MAP[op] == 'FUNCTION':
functions.append(op_str)
else:
operators += '"%s"%s{ returntoken(%s); }\n' \
% (op_str, ' ' * (8 - len(op_str)), TOKEN_MAP[op])
# Put all functions in a single regex
if functions:
operators += '("%s") { returntoken(FUNCTION); }\n' \
% '"|"'.join(functions)
# -----------------------------------------
# raw lex script, verbatim here
# -----------------------------------------
......@@ -409,8 +465,6 @@ class Parser(BisonParser):
yylloc.first_column = yycolumn; \
yylloc.last_column = yycolumn + yyleng; \
yycolumn += yyleng;
/*[a-zA-Z][0-9]+ { returntoken(CONCAT_POW); }*/
%}
%option yylineno
......@@ -421,19 +475,10 @@ class Parser(BisonParser):
[a-zA-Z] { returntoken(IDENTIFIER); }
"(" { returntoken(LPAREN); }
")" { returntoken(RPAREN); }
"+" { returntoken(PLUS); }
"-" { returntoken(MINUS); }
"*" { returntoken(TIMES); }
"^" { returntoken(POW); }
"/" { returntoken(DIVIDE); }
"," { returntoken(COMMA); }
"??" { returntoken(POSSIBILITIES); }
"?" { returntoken(HINT); }
"@" { returntoken(REWRITE); }
"quit" { yyterminate(); returntoken(QUIT); }
""" + operators + r"""
"raise" { returntoken(RAISE); }
"graph" { returntoken(GRAPH); }
"sqrt" { returntoken(SQRT); }
"quit" { yyterminate(); returntoken(QUIT); }
[ \t\v\f] { }
[\n] { yycolumn = 0; returntoken(NEWLINE); }
......
from node import TYPE_OPERATOR
# Each rule will append its hint message to the following dictionary. The
# function pointer to the apply function of the rule is used as key. The
# corresponding value is a string, which will be used to produce the hint
......@@ -51,16 +54,27 @@ def filter_duplicates(possibilities):
return unique
def pick_suggestion(possibilities):
if not possibilities:
return
def find_parent_node(root, child):
nodes = [root]
while nodes:
node = nodes.pop()
while node:
# TODO: pick the best suggestion.
suggestion = 0
return possibilities[suggestion]
if node.type != TYPE_OPERATOR:
break
if child in node:
return node
def apply_suggestion(root, subtree_map, suggestion):
if len(node) > 1:
nodes.append(node[1])
node = node[0]
def apply_suggestion(root, suggestion):
# TODO: clone the root node before modifying. After deep copying the root
# node, the subtree_map cannot be used since the hash() of each node in the
# deep copied root node has changed.
......@@ -68,10 +82,7 @@ def apply_suggestion(root, subtree_map, suggestion):
subtree = suggestion.handler(suggestion.root, suggestion.args)
if suggestion.root in subtree_map:
parent_node = subtree_map[suggestion.root]
else:
parent_node = None
parent_node = find_parent_node(root, suggestion.root)
# There is either a parent node or the subtree is the root node.
# FIXME: FAIL: test_diagnostic_test_application in tests/test_b1_ch08.py
......@@ -85,4 +96,5 @@ def apply_suggestion(root, subtree_map, suggestion):
if parent_node:
parent_node.substitute(suggestion.root, subtree)
return root
return subtree
from ..node import OP_ADD, OP_MUL, OP_DIV, OP_POW, OP_NEG
from .poly import match_combine_polynomes
from ..node import OP_ADD, OP_MUL, OP_DIV, OP_POW, OP_NEG, OP_SIN, OP_COS, \
OP_TAN
from .groups import match_combine_groups
from .factors import match_expand
from .powers import match_add_exponents, match_subtract_exponents, \
match_multiply_exponents, match_duplicate_exponent, \
match_remove_negative_exponent, match_exponent_to_root, \
match_extend_exponent
from .numerics import match_divide_numerics, match_multiply_numerics, \
match_multiply_zero
match_raised_fraction, match_remove_negative_exponent, \
match_exponent_to_root, match_extend_exponent, match_constant_exponent
from .numerics import match_add_numerics, match_divide_numerics, \
match_multiply_numerics, match_multiply_zero, match_multiply_one, \
match_raise_numerics
from .fractions import match_constant_division, match_add_constant_fractions, \
match_expand_and_add_fractions
from .negation import match_negate_group, match_negated_division
match_expand_and_add_fractions, match_multiply_fractions, \
match_divide_fractions, match_equal_fraction_parts
from .negation import match_negated_factor, match_negate_polynome, \
match_negated_division
from .sort import match_sort_multiplicants
from .goniometry import match_add_quadrants, match_negated_parameter, \
match_half_pi_subtraction, match_standard_radian
RULES = {
OP_ADD: [match_add_constant_fractions, match_combine_polynomes, \
match_combine_groups],
OP_MUL: [match_multiply_numerics, match_expand, match_add_exponents, \
match_expand_and_add_fractions, match_multiply_zero],
OP_DIV: [match_subtract_exponents, match_divide_numerics, \
match_constant_division, match_negated_division],
OP_POW: [match_multiply_exponents, match_duplicate_exponent, \
match_remove_negative_exponent, match_exponent_to_root, \
match_extend_exponent],
OP_NEG: [match_negate_group],
OP_ADD: [match_add_numerics, match_add_constant_fractions,
match_combine_groups, match_add_quadrants],
OP_MUL: [match_multiply_numerics, match_expand, match_add_exponents,
match_expand_and_add_fractions, match_multiply_zero,
match_negated_factor, match_multiply_one,
match_sort_multiplicants, match_multiply_fractions],
OP_DIV: [match_subtract_exponents, match_divide_numerics,
match_constant_division, match_divide_fractions, \
match_negated_division, match_equal_fraction_parts],
OP_POW: [match_multiply_exponents, match_duplicate_exponent,
match_raised_fraction, match_remove_negative_exponent,
match_exponent_to_root, match_extend_exponent,
match_constant_exponent, match_raise_numerics],
OP_NEG: [match_negate_polynome],
OP_SIN: [match_negated_parameter, match_half_pi_subtraction,
match_standard_radian],
OP_COS: [match_negated_parameter, match_half_pi_subtraction,
match_standard_radian],
OP_TAN: [match_standard_radian],
}
from itertools import product, combinations
from ..node import Scope, OP_ADD, OP_MUL, OP_NEG
from ..node import Scope, OP_ADD, OP_MUL
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
......@@ -18,9 +18,13 @@ def match_expand(node):
additions = []
for n in Scope(node):
if n.is_leaf or n.is_op(OP_NEG) and n[0].is_leaf:
if n.is_leaf:
leaves.append(n)
elif n.op == OP_ADD:
# If the addition only contains numerics, do not expand
if not filter(lambda n: not n.is_numeric(), Scope(n)):
continue
additions.append(n)
for args in product(leaves, additions):
......@@ -45,7 +49,7 @@ def expand_single(root, args):
scope = Scope(root)
# Replace 'a' with the new expression
scope.remove(a, a * b + a * c)
scope.replace(a, a * b + a * c)
# Remove the addition
scope.remove(bc)
......@@ -66,7 +70,7 @@ def expand_double(root, args):
scope = Scope(root)
# Replace 'a + b' with the new expression
scope.remove(ab, a * c + a * d + b * c + b * d)
scope.replace(ab, a * c + a * d + b * c + b * d)
# Remove the right addition
scope.remove(cd)
......
from itertools import combinations
from itertools import combinations, product
from .utils import least_common_multiple
from ..node import ExpressionLeaf as L, Scope, OP_DIV, OP_ADD, OP_MUL, OP_NEG
from .utils import least_common_multiple, partition
from ..node import ExpressionLeaf as L, Scope, negate, OP_DIV, OP_ADD, \
OP_MUL, OP_POW, nary_node, negate
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
......@@ -44,7 +45,7 @@ def division_by_one(root, args):
return args[0]
MESSAGES[division_by_one] = _('Division of {1} by 1 reduces to {1}.')
MESSAGES[division_by_one] = _('Division by 1 yields the nominator.')
def division_of_zero(root, args):
......@@ -64,37 +65,29 @@ def division_by_self(root, args):
return L(1)
MESSAGES[division_by_self] = _('Division of {1} by {1} reduces to 1.')
MESSAGES[division_by_self] = _('Division of {1} by itself reduces to 1.')
def match_add_constant_fractions(node):
"""
1 / 2 + 3 / 4 -> 2 / 4 + 3 / 4 # Equalize denominators
2 / 2 - 3 / 4 -> 4 / 4 - 3 / 4
2 / 4 + 3 / 4 -> 5 / 4 # Equal denominators, so nominators can
# be added
2 / 2 - 3 / 4 -> 4 / 4 - 3 / 4 # Equalize denominators
2 / 4 - 3 / 4 -> -1 / 4 # Equal denominators, so nominators can
# be subtracted
2 / 4 - 3 / 4 -> -1 / 4
1 / 2 + 3 / 4 -> 4 / 8 + 6 / 8 # Equalize denominators by multiplying
# them with eachother
"""
assert node.is_op(OP_ADD)
p = []
scope = Scope(node)
def is_division(node):
return node.is_op(OP_DIV) or \
(node.is_op(OP_NEG) and node[0].is_op(OP_DIV))
fractions = filter(is_division, Scope(node))
fractions = filter(lambda node: node.is_op(OP_DIV), scope)
for a, b in combinations(fractions, 2):
if a.is_op(OP_NEG):
na, da = a[0]
else:
na, da = a
if b.is_op(OP_NEG):
nb, db = b[0]
else:
nb, db = b
if da == db:
......@@ -105,7 +98,12 @@ def match_add_constant_fractions(node):
# least common multiple of their denominators. Later, the
# nominators will be added
denom = least_common_multiple(da.value, db.value)
p.append(P(node, equalize_denominators, (a, b, denom)))
p.append(P(node, equalize_denominators, (scope, a, b, denom)))
# Also, add the (non-recommended) possibility to multiply the
# denominators
p.append(P(node, equalize_denominators, (scope, a, b,
da.value * db.value)))
return p
......@@ -113,29 +111,28 @@ def match_add_constant_fractions(node):
def equalize_denominators(root, args):
"""
1 / 2 + 3 / 4 -> 2 / 4 + 3 / 4
1 / 2 - 3 / 4 -> 2 / 4 - 3 / 4
a / 2 + b / 4 -> 2a / 4 + b / 4
"""
denom = args[2]
scope = Scope(root)
scope, denom = args[::3]
for fraction in args[:2]:
n, d = fraction[0] if fraction.is_op(OP_NEG) else fraction
for fraction in args[1:3]:
n, d = fraction
mult = denom / d.value
if mult != 1:
n = L(n.value * mult) if n.is_numeric() else L(mult) * n
if fraction.is_op(OP_NEG):
scope.remove(fraction, -(n / L(d.value * mult)))
if n.is_numeric():
nom = L(n.value * mult)
else:
scope.remove(fraction, n / L(d.value * mult))
nom = L(mult) * n
scope.replace(fraction, negate(nom / L(d.value * mult), n.negated))
return scope.as_nary_node()
MESSAGES[equalize_denominators] = _('Equalize the denominators of division'
' of {1} by {2}.')
MESSAGES[equalize_denominators] = _('Equalize the denominators of divisions'
' {2} and {3} to {4}.')
def add_nominators(root, args):
......@@ -147,21 +144,11 @@ def add_nominators(root, args):
"""
# TODO: is 'add' Appropriate when rewriting to "(a + (-c)) / b"?
ab, cb = args
if ab.is_op(OP_NEG):
a, b = ab[0]
else:
a, b = ab
if cb.is_op(OP_NEG):
c = -cb[0][0]
else:
c = cb[0]
scope = Scope(root)
# Replace the left node with the new expression
scope.remove(ab, (a + c) / b)
scope.replace(ab, (a + cb[0].negate(cb.negated)) / b)
# Remove the right node
scope.remove(cb)
......@@ -185,3 +172,255 @@ def match_expand_and_add_fractions(node):
p = []
return p
def match_multiply_fractions(node):
"""
a / b * (c / d) -> ac / (bd)
a * (b / c) -> ab / c
"""
assert node.is_op(OP_MUL)
p = []
scope = Scope(node)
fractions, others = partition(lambda n: n.is_op(OP_DIV), scope)
for ab, cd in combinations(fractions, 2):
p.append(P(node, multiply_fractions, (scope, ab, cd)))
for a, bc in product(others, fractions):
p.append(P(node, multiply_with_fraction, (scope, a, bc)))
return p
def multiply_fractions(root, args):
"""
a / b * (c / d) -> ac / (bd)
"""
scope, ab, cd = args
a, b = ab
c, d = cd
scope.replace(ab, a * c / (b * d))
scope.remove(cd)
return scope.as_nary_node()
MESSAGES[multiply_fractions] = _('Multiply fractions {2} and {3}.')
def multiply_with_fraction(root, args):
"""
a * (b / c) -> ab / c
"""
scope, a, bc = args
b, c = bc
scope.replace(a, a * b / c)
scope.remove(bc)
return scope.as_nary_node()
MESSAGES[multiply_with_fraction] = _('Multiply {2} with fraction {3}.')
def match_divide_fractions(node):
"""
Reduce divisions of fractions to a single fraction.
Examples:
a / b / c -> a / (bc)
a / (b / c) -> ac / b
"""
assert node.is_op(OP_DIV)
nom, denom = node
p = []
if nom.is_op(OP_DIV):
p.append(P(node, divide_fraction, tuple(nom) + (denom,)))
if denom.is_op(OP_DIV):
p.append(P(node, divide_by_fraction, (nom,) + tuple(denom)))
return p
def divide_fraction(root, args):
"""
a / b / c -> a / (bc)
"""
a, b, c = args
return a / (b * c)
MESSAGES[divide_fraction] = _('Move {3} to denominator of fraction {1} / {2}.')
def divide_by_fraction(root, args):
"""
a / (b / c) -> ac / b
"""
a, b, c = args
return a * c / b
MESSAGES[divide_by_fraction] = \
_('Move {3} to nominator of fraction {1} / {2}.')
#def match_extract_divided_fractions(node):
# """
# Reduce divisions of fractions to a single fraction.
#
# Examples:
# a / b / c -> a / bc
# a / (b / c) -> ac / b
# # IMPLICIT: a / b / (c / d) ->* ad / bd -> validation test!
# """
# assert node.is_op(OP_DIV)
#
# nom, denom = node
# n_scope, d_scope = fraction_scopes(node)
# is_division = lambda n: n.is_op(OP_DIV)
# n_fractions, n_others = partition(is_division, n_scope)
# d_fractions, d_others = partition(is_division, d_scope)
#
#
# return []
def fraction_scopes(node):
"""
Get the multiplication scopes of the nominator and denominator of a
fraction.
"""
assert node.is_op(OP_DIV)
nominator, denominator = node
if nominator.is_op(OP_MUL):
n_scope = list(Scope(nominator))
else:
n_scope = [nominator]
if denominator.is_op(OP_MUL):
d_scope = list(Scope(denominator))
else:
d_scope = [denominator]
return n_scope, d_scope
def match_equal_fraction_parts(node):
"""
Divide nominator and denominator by the same part.
Examples:
ab / (ac) -> b / c
ab / a -> b / 1
a / (ab) -> 1 / b
If the same root appears in both nominator and denominator, extrct it so
that it can be reduced to a single power by power division rules.
a ^ p * b / a ^ q -> a ^ p / a ^ q * b / 1
a ^ p * b / a -> a ^ p / a * b / 1
a * b / a ^ q -> a / a ^ q * b / 1
"""
assert node.is_op(OP_DIV)
nominator, denominator = node
n_scope, d_scope = fraction_scopes(node)
p = []
# Look for matching parts in scopes
for i, n in enumerate(n_scope):
for j, d in enumerate(d_scope):
if n.equals(d, ignore_negation=True):
p.append(P(node, divide_fraction_parts,
(negate(n, 0), n_scope, d_scope, i, j)))
if n.is_op(OP_POW):
a = n[0]
if d == a or (d.is_op(OP_POW) and d[0] == a):
# a ^ p * b / a -> a ^ p / a * b
p.append(P(node, extract_divided_roots,
(a, n_scope, d_scope, i, j)))
elif d.is_op(OP_POW) and n == d[0]:
# a * b / a ^ q -> a / a ^ q * b
p.append(P(node, extract_divided_roots,
(d[0], n_scope, d_scope, i, j)))
return p
def remove_from_scopes(n_scope, d_scope, i, j):
a_n, a_d = n_scope[i], d_scope[j]
del n_scope[i]
del d_scope[j]
if not n_scope:
# Last element of nominator scope, replace by 1
nom = L(1)
elif len(n_scope) == 1:
# Only one element left, no multiplication
nom = n_scope[0]
else:
# Still a multiplication
nom = nary_node('*', n_scope)
if not d_scope:
denom = L(1)
elif len(n_scope) == 1:
denom = d_scope[0]
else:
denom = nary_node('*', d_scope)
return a_n, a_d, nom, denom
def divide_fraction_parts(root, args):
"""
Divide nominator and denominator by the same part.
Examples:
ab / (ac) -> b / c
ab / a -> b / 1
a / (ab) -> 1 / b
-ab / a -> -b / 1
"""
a, n_scope, d_scope, i, j = args
n, d = root
a_n, a_d, nom, denom = remove_from_scopes(n_scope, d_scope, i, j)
# Move negation of removed part to nominator and denominator
return nom.negate(n.negated + a_n.negated) \
/ denom.negate(d.negated + a_d.negated)
MESSAGES[divide_fraction_parts] = \
_('Divide nominator and denominator in {0} by {1}.')
def extract_divided_roots(root, args):
"""
a ^ p * b / a ^ q -> a ^ p / a ^ q * b / 1
a ^ p * b / a -> a ^ p / a * b / 1
a * b / a ^ q -> a / a ^ q * b / 1
"""
a, n_scope, d_scope, i, j = args
n, d = root
ap, aq, nom, denom = remove_from_scopes(n_scope, d_scope, i, j)
return ap / aq * nom.negate(n.negated) / denom.negate(d.negated)
MESSAGES[extract_divided_roots] = \
_('Extract the root {1} from nominator and denominator in {0}.')
from .utils import is_fraction
from ..node import ExpressionNode as N, ExpressionLeaf as L, Scope, OP_ADD, \
OP_POW, OP_MUL, OP_DIV, OP_SIN, OP_COS, OP_TAN, PI, TYPE_OPERATOR
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
def sin(*args):
return N('sin', *args)
def cos(*args):
return N('cos', *args)
def tan(*args):
return N('tan', *args)
def match_add_quadrants(node):
"""
sin(t) ^ 2 + cos(t) ^ 2 -> 1
"""
assert node.is_op(OP_ADD)
p = []
sin_q, cos_q = node
if sin_q.is_power(2) and cos_q.is_power(2):
sin, cos = sin_q[0], cos_q[0]
if sin.is_op(OP_SIN) and cos.is_op(OP_COS):
p.append(P(node, add_quadrants, ()))
return p
def add_quadrants(root, args):
"""
sin(t) ^ 2 + cos(t) ^ 2 -> 1
"""
return L(1)
MESSAGES[add_quadrants] = _('Add the sinus and cosinus quadrants to 1.')
def match_negated_parameter(node):
"""
sin(-t) -> -sin(t)
cos(-t) -> cos(t)
"""
assert node.is_op(OP_SIN) or node.is_op(OP_COS)
t = node[0]
if t.negated:
if node.op == OP_SIN:
return [P(node, negated_sinus_parameter, (t,))]
return [P(node, negated_cosinus_parameter, (t,))]
return []
def negated_sinus_parameter(root, args):
"""
sin(-t) -> -sin(t)
"""
return -sin(+args[0])
MESSAGES[negated_sinus_parameter] = \
_('Bring the negation from the sinus parameter {1} to the outside.')
def negated_cosinus_parameter(root, args):
"""
cos(-t) -> cos(t)
"""
return cos(+args[0])
MESSAGES[negated_cosinus_parameter] = \
_('Remove the negation from the cosinus parameter {1}.')
def match_half_pi_subtraction(node):
"""
sin(pi / 2 - t) -> cos(t)
cos(pi / 2 - t) -> sin(t)
"""
assert node.is_op(OP_SIN) or node.is_op(OP_COS)
if node[0].is_op(OP_ADD):
half_pi, t = node[0]
if half_pi == L(PI) / 2:
if node.op == OP_SIN:
return [P(node, half_pi_subtraction_sinus, (t,))]
return []
def is_pi_frac(node, denominator):
"""
Check if a node is a fraction of 1 multiplied with PI.
Example:
>>> print is_pi_frac(L(1) / 2 * L(PI), 2)
True
"""
if not node.is_op(OP_MUL):
return False
frac, pi = node
if not frac.is_op(OP_DIV) or not pi.is_leaf or pi.value != PI:
return False
n, d = frac
return n == 1 and d == denominator
def sqrt(value):
return N('sqrt', L(value))
l0, l1, sq2, sq3 = L(0), L(1), sqrt(2), sqrt(3)
half = l1 / 2
CONSTANTS = {
OP_SIN: [l0, half, half * sq2, half * sq3, l1],
OP_COS: [l1, half * sq3, half * sq2, half, l0],
OP_TAN: [l0, l1 / 3 * sq3, l1, sq3]
}
def match_standard_radian(node):
"""
Apply a direct constant calculation from the constants table.
| 0 | pi / 6 | pi / 4 | pi / 3 | pi / 2
----+---+-----------+-----------+-----------+-------
sin | 0 | 1/2 | sqrt(2)/2 | sqrt(3)/2 | 1
cos | 1 | sqrt(3)/2 | sqrt(2)/2 | 1/2 | 0
tan | 0 | sqrt(3)/3 | 1 | sqrt(3) | -
"""
assert node.type == TYPE_OPERATOR and node.op in (OP_SIN, OP_COS, OP_TAN)
t = node[0]
if t == 0:
return [P(node, standard_radian, (node.op, 0))]
denoms = [6, 4, 3]
if node.op != OP_TAN:
denoms.append(2)
for i, denominator in enumerate(denoms):
if is_pi_frac(t, denominator):
return [P(node, standard_radian, (node.op, i + 1))]
return []
def standard_radian(root, args):
op, column = args
return CONSTANTS[op][column].clone()
MESSAGES[standard_radian] = _('Replace standard radian {0}.')
from itertools import combinations
from ..node import ExpressionNode as Node, ExpressionLeaf as Leaf, Scope, \
OP_ADD, OP_MUL, OP_NEG
from ..node import ExpressionLeaf as Leaf, Scope, OP_ADD, OP_MUL, nary_node, \
negate
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
......@@ -18,50 +18,53 @@ def match_combine_groups(node):
ab + 2ab -> 3ab
ab + ba -> 2ab
"""
# TODO: handle OP_NEG nodes
assert node.is_op(OP_ADD)
p = []
groups = []
scope = Scope(node)
for n in Scope(node):
groups.append((1, n, n))
for n in scope:
if not n.is_numeric():
groups.append((Leaf(1), n, n))
# Each number multiplication yields a group, multiple occurences of
# the same group can be replaced by a single one
if n.is_op(OP_MUL):
scope = Scope(n)
l = len(scope)
n_scope = Scope(n)
l = len(n_scope)
for i, sub_node in enumerate(scope):
if sub_node.is_numeric() or (sub_node.is_op(OP_NEG)
and sub_node[0].is_numeric()):
others = [scope[j] for j in range(i) + range(i + 1, l)]
for i, sub_node in enumerate(n_scope):
if sub_node.is_numeric():
others = [n_scope[j] for j in range(i) + range(i + 1, l)]
if len(others) == 1:
g = others[0]
else:
g = Node('*', *others)
g = nary_node('*', others)
groups.append((sub_node, g, n))
for g0, g1 in combinations(groups, 2):
if g0[1].equals(g1[1]):
p.append(P(node, combine_groups, g0 + g1))
for (c0, g0, n0), (c1, g1, n1) in combinations(groups, 2):
if g0.equals(g1):
p.append(P(node, combine_groups, (scope, c0, g0, n0, c1, g1, n1)))
elif g0.equals(g1, ignore_negation=True):
# Move negations to constants
c0 = c0.negate(g0.negated)
c1 = c1.negate(g1.negated)
g0 = negate(g0, 0)
g1 = negate(g1, 0)
p.append(P(node, combine_groups, (scope, c0, g0, n0, c1, g1, n1)))
return p
def combine_groups(root, args):
c0, g0, n0, c1, g1, n1 = args
scope = Scope(root)
if not isinstance(c0, Leaf) and not isinstance(c0, Node):
c0 = Leaf(c0)
scope, c0, g0, n0, c1, g1, n1 = args
# Replace the left node with the new expression
scope.remove(n0, (c0 + c1) * g0)
scope.replace(n0, (c0 + c1) * g0)
# Remove the right node
scope.remove(n1)
......@@ -70,4 +73,4 @@ def combine_groups(root, args):
MESSAGES[combine_groups] = \
_('Group "{2}" is multiplied by {1} and {4}, combine them.')
_('Group "{3}" is multiplied by {2} and {5}, combine them.')
from ..node import get_scope, nary_node, OP_NEG, OP_ADD, OP_MUL, OP_DIV
from ..node import Scope, OP_ADD, OP_MUL, OP_DIV
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
def match_negate_group(node):
def match_negated_factor(node):
"""
--a -> a
--ab -> ab
-(-ab + c) -> --ab - c
-(a + b + ... + z) -> -a + -b + ... + -z
This rule assures that negations in the scope of a multiplication are
brought to the most left node in the multiplication's scope.
Example:
a * -b -> -ab
"""
assert node.is_op(OP_NEG)
assert node.is_op(OP_MUL)
val = node[0]
p = []
scope = Scope(node)
if val.is_op(OP_NEG):
# --a
return [P(node, double_negation, (node,))]
# FIXME: The negation that is brought outside is assigned to the first
# element in the scope during the next parsing step:
# -ab -> -(ab), but -(ab) is printed as -ab
for factor in scope[1:]:
if factor.negated:
p.append(P(node, negated_factor, (scope, factor)))
if not val.is_leaf:
scope = get_scope(val)
return p
if not any(map(lambda n: n.is_op(OP_NEG), scope)):
return []
if val.is_op(OP_MUL):
# --ab
return [P(node, negate_polynome, (node, scope))]
def negated_factor(root, args):
"""
a * -b -> -ab
"""
scope, factor = args
scope[0] = -scope[0]
scope.replace(factor, +factor)
elif val.is_op(OP_ADD):
# -(ab + c) -> -ab - c
# -(-ab + c) -> ab - c
return [P(node, negate_group, (node, scope))]
return scope.as_nary_node()
return []
MESSAGES[negated_factor] = \
_('Bring negation of {2} to the outside of the multiplication.')
def negate_polynome(root, args):
def match_negate_polynome(node):
"""
# -a * -3c -> a * 3c
--a * 3c -> a * 3c
--ab -> ab
--abc -> abc
--a -> a
-(a + b) -> -a - b
"""
node, scope = args
#print 'match_negate_polynome:', node, node.negated
assert node.negated, str(node.negated) + '; ' + str(node)
for i, n in enumerate(scope):
# XXX: validate this property!
if n.is_op(OP_NEG):
scope[i] = n[0]
return nary_node('*', scope)
p = []
raise RuntimeError('No negation node found in scope.')
if node.negated == 2:
# --a
p.append(P(node, double_negation, ()))
if node.is_op(OP_ADD):
# -(a + b) -> -a - b
p.append(P(node, negate_polynome, ()))
MESSAGES[negate_polynome] = _('Apply negation to the polynome {1[0]}.')
return p
def negate_group(root, args):
def double_negation(root, args):
"""
-(-ab + ... + c) -> --ab + ... + -c
--a -> a
"""
node, scope = args
# Negate each group
for i, n in enumerate(scope):
scope[i] = -n
return nary_node('+', scope)
return root.reduce_negation(2)
MESSAGES[negate_group] = _('Apply negation to the subexpression {1[0]}.')
MESSAGES[double_negation] = _('Remove double negation in {0}.')
def double_negation(root, args):
def negate_polynome(root, args):
"""
--a -> a
-(a + b) -> -a - b
"""
node = args[0]
scope = Scope(root)
# Negate each group
for i, n in enumerate(scope):
scope[i] = -n
return +scope.as_nary_node()
return node[0][0]
MESSAGES[negate_polynome] = _('Apply negation to the polynome {0}.')
MESSAGES[double_negation] = _('Remove double negation in {1}.')
#def negate_group(root, args):
# """
# -(a * -3c) -> a * 3c
# -(a * ... * -b) -> ab
# """
# node, scope = args
#
# for i, n in enumerate(scope):
# if n.negated:
# scope[i] = n.reduce_negation()
#
# return nary_node('*', scope).reduce_negation()
#
#
#MESSAGES[negate_polynome] = _('Apply negation to the subexpression {1[0]}.')
def match_negated_division(node):
......@@ -92,33 +112,28 @@ def match_negated_division(node):
assert node.is_op(OP_DIV)
a, b = node
a_neg = a.is_op(OP_NEG)
b_neg = b.is_op(OP_NEG)
if a_neg and b_neg:
return [P(node, double_negated_division, (node,))]
elif a_neg:
return [P(node, single_negated_division, (a[0], b))]
elif b_neg:
return [P(node, single_negated_division, (a, b[0]))]
if a.negated and b.negated:
return [P(node, double_negated_division, ())]
elif b.negated:
return [P(node, single_negated_division, (a, +b))]
return []
def single_negated_division(root, args):
"""
-a / b -> -(a / b)
a / -b -> -(a / b)
a / -b -> -a / b
"""
a, b = args
# FIXME: "-a/b" results in "-(a/b)", which will cause a loop.
return -(a / b)
return -a / b
MESSAGES[single_negated_division] = \
_('Bring negation outside of the division: -({1} / {2}).')
_('Bring negation outside of the division: -{1} / {2}.')
def double_negated_division(root, args):
......@@ -127,8 +142,11 @@ def double_negated_division(root, args):
"""
a, b = root
return a[0] / b[0]
return +a / +b
MESSAGES[double_negated_division] = \
_('Eliminate top and bottom negation in {1}.')
_('Eliminate top and bottom negation in {0}.')
# TODO: negated multiplication: -a * -b = ab
from itertools import combinations
from ..node import ExpressionLeaf as Leaf, Scope, OP_DIV, OP_MUL, OP_NEG
from .utils import greatest_common_divisor
from ..node import ExpressionLeaf as Leaf, Scope, negate, OP_ADD, OP_DIV, \
OP_MUL, OP_POW
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
def add_numerics(root, args):
def match_add_numerics(node):
"""
Combine two constants to a single constant in an n-ary addition.
......@@ -14,31 +16,57 @@ def add_numerics(root, args):
2 + -3 -> -1
-2 + 3 -> 1
-2 + -3 -> -5
0 + 3 -> 3
0 + -3 -> -3
"""
n0, n1, c0, c1 = args
assert node.is_op(OP_ADD)
p = []
scope = Scope(node)
numerics = []
for n in scope:
if n == 0:
p.append(P(node, remove_zero, (scope, n)))
elif n.is_numeric():
numerics.append(n)
if c0.is_op(OP_NEG):
c0 = -c0[0].value
else:
c0 = c0.value
for c0, c1 in combinations(numerics, 2):
p.append(P(node, add_numerics, (scope, c0, c1)))
if c1.is_op(OP_NEG):
c1 = (-c1[0].value)
else:
c1 = c1.value
return p
scope = Scope(root)
def remove_zero(root, args):
"""
0 + a -> a
"""
scope, n = args
scope.remove(n)
return scope.as_nary_node()
def add_numerics(root, args):
"""
2 + 3 -> 5
2 + -3 -> -1
-2 + 3 -> 1
-2 + -3 -> -5
"""
scope, c0, c1 = args
value = c0.actual_value() + c1.actual_value()
# Replace the left node with the new expression
scope.remove(n0, Leaf(c0 + c1))
scope.replace(c0, Leaf(abs(value)).negate(int(value < 0)))
# Remove the right node
scope.remove(n1)
scope.remove(c1)
return scope.as_nary_node()
MESSAGES[add_numerics] = _('Combine the constants {1} and {2}.')
MESSAGES[add_numerics] = _('Add the constants {2} and {3}.')
#def match_subtract_numerics(node):
......@@ -63,19 +91,37 @@ def match_divide_numerics(node):
3.0 / 2 -> 1.5
3 / 2.0 -> 1.5
3.0 / 2.0 -> 1.5
3 / 1.0 -> 3 # Exceptional case: division of integer by 1.0 keeps
# integer precision
3 / 1.0 -> 3 # Exceptional case: division of integer by 1.0
# keeps integer precision
2 / 4 -> 1 / 2 # 1 < greatest common divisor <= nominator
4 / 3 -> 1 + 1 / 3 # nominator > denominator
"""
assert node.is_op(OP_DIV)
n, d = node
divide = False
dv = d.value
nv, dv = n.value, d.value
if n.is_int() and d.is_int():
mod = nv % dv
if not mod:
# 6 / 2 -> 3
# 3 / 2 -> 3 / 2
divide = not divmod(n.value, dv)[1]
return [P(node, divide_numerics, (nv, dv, n.negated + d.negated))]
gcd = greatest_common_divisor(nv, dv)
if 1 < gcd <= nv:
# 2 / 4 -> 1 / 2
# TODO: Test with negations!
return [P(node, reduce_fraction_constants, (gcd,))]
if nv > dv:
# 4 / 3 -> 1 + 1 / 3
# TODO: Test with negations!
return [P(node, fraction_to_int_fraction,
((nv - mod) / dv, mod, dv))]
elif n.is_numeric() and d.is_numeric():
if d == 1.0:
# 3 / 1.0 -> 3
......@@ -84,14 +130,14 @@ def match_divide_numerics(node):
# 3.0 / 2 -> 1.5
# 3 / 2.0 -> 1.5
# 3.0 / 2.0 -> 1.5
divide = True
return [P(node, divide_numerics, (nv, dv, n.negated + d.negated))]
return [P(node, divide_numerics, (n.value, dv))] if divide else []
return []
def divide_numerics(root, args):
"""
Combine two constants to a single constant in a division.
Combine two divided constants into a single constant.
Examples:
6 / 2 -> 3
......@@ -100,14 +146,48 @@ def divide_numerics(root, args):
3.0 / 2.0 -> 1.5
3 / 1.0 -> 3
"""
n, d = args
n, d, negated = args
return Leaf(n / d)
return Leaf(n / d).negate(negated)
MESSAGES[divide_numerics] = _('Divide constant {1} by constant {2}.')
def reduce_fraction_constants(root, args):
"""
Reduce the nominator and denominator of a fraction with a given greatest
common divisor.
Example:
2 / 4 -> 1 / 2
"""
gcd = args[0]
a, b = root
return Leaf(a.value / gcd).negate(a.negated) \
/ Leaf(b.value / gcd).negate(b.negated)
MESSAGES[reduce_fraction_constants] = _('Simplify fraction {0}.')
def fraction_to_int_fraction(root, args):
"""
Combine two divided integer into an integer with a fraction.
Examples:
4 / 3 -> 1 + 1 / 3
"""
integer, nominator, denominator = map(Leaf, args)
return integer + nominator / denominator
MESSAGES[fraction_to_int_fraction] = _('Expand fraction with nominator greater'
' than denominator {0} to an integer plus a fraction.')
def match_multiply_zero(node):
"""
a * 0 -> 0
......@@ -119,20 +199,12 @@ def match_multiply_zero(node):
assert node.is_op(OP_MUL)
left, right = node
is_zero = lambda n: n.is_leaf and n.value == 0
if is_zero(left):
negated = right.is_op(OP_NEG)
elif is_zero(right):
negated = left.is_op(OP_NEG)
elif left.is_op(OP_NEG) and is_zero(left[0]):
negated = not right.is_op(OP_NEG)
elif right.is_op(OP_NEG) and is_zero(right[0]):
negated = not left.is_op(OP_NEG)
else:
return []
return [P(node, multiply_zero, (negated,))]
if (left.is_leaf and left.value == 0) \
or (right.is_leaf and right.value == 0):
return [P(node, multiply_zero, (left.negated + right.negated,))]
return []
def multiply_zero(root, args):
......@@ -143,17 +215,48 @@ def multiply_zero(root, args):
0 * -a -> -0
-0 * -a -> 0
"""
negated = args[0]
if negated:
return -Leaf(0)
else:
return Leaf(0)
return negate(Leaf(0), args[0])
MESSAGES[multiply_zero] = _('Multiplication with zero yields zero.')
def match_multiply_one(node):
"""
a * 1 -> a
1 * a -> a
-1 * a -> -a
1 * -a -> -a
-1 * -a -> a
"""
assert node.is_op(OP_MUL)
left, right = node
if left.value == 1:
return [P(node, multiply_one, (right, left))]
if right.value == 1:
return [P(node, multiply_one, (left, right))]
return []
def multiply_one(root, args):
"""
a * 1 -> a
1 * a -> a
-1 * a -> -a
1 * -a -> -a
-1 * -a -> a
"""
a, one = args
return a.negate(one.negated + root.negated)
MESSAGES[multiply_one] = _('Multiplication with one yields the multiplicant.')
def match_multiply_numerics(node):
"""
3 * 2 -> 6
......@@ -164,16 +267,11 @@ def match_multiply_numerics(node):
assert node.is_op(OP_MUL)
p = []
numerics = []
for n in Scope(node):
if n.is_numeric():
numerics.append((n, n.value))
elif n.is_op(OP_NEG) and n[0].is_numeric():
numerics.append((n, -n[0].value))
scope = Scope(node)
numerics = filter(lambda n: n.is_numeric(), scope)
for (n0, v0), (n1, v1) in combinations(numerics, 2):
p.append(P(node, multiply_numerics, (n0, n1, v0, v1)))
for c0, c1 in combinations(numerics, 2):
p.append(P(node, multiply_numerics, (scope, c0, c1)))
return p
......@@ -185,24 +283,46 @@ def multiply_numerics(root, args):
Example:
2 * 3 -> 6
"""
n0, n1, v0, v1 = args
scope = []
value = v0 * v1
if value > 0:
substitution = Leaf(value)
else:
substitution = -Leaf(-value)
scope = Scope(root)
scope, c0, c1 = args
# Replace the left node with the new expression
scope.remove(n0, substitution)
substitution = Leaf(c0.value * c1.value).negate(c0.negated + c1.negated)
scope.replace(c0, substitution)
# Remove the right node
scope.remove(n1)
scope.remove(c1)
return scope.as_nary_node()
MESSAGES[multiply_numerics] = _('Multiply constant {1} with {2}.')
MESSAGES[multiply_numerics] = _('Multiply constant {2} with {3}.')
def match_raise_numerics(node):
"""
2 ^ 3 -> 8
(-2) ^ 3 -> -8
(-2) ^ 2 -> 4
"""
assert node.is_op(OP_POW)
r, e = node
if r.is_numeric() and e.is_numeric() and not e.negated:
return [P(node, raise_numerics, (r, e))]
return []
def raise_numerics(root, args):
"""
2 ^ 3 -> 8
(-2) ^ 3 -> -8
(-2) ^ 2 -> 4
"""
r, e = args
return Leaf(r.value ** e.value).negate(r.negated * e.value)
MESSAGES[raise_numerics] = _('Raise constant {1} with {2}.')
from itertools import combinations
from ..node import Scope, OP_ADD, OP_NEG
from ..possibilities import Possibility as P, MESSAGES
from .numerics import add_numerics
def is_numeric_or_negated_numeric(n):
return n.is_numeric() or (n.is_op(OP_NEG) and n[0].is_numeric())
def match_combine_polynomes(node, verbose=False):
"""
n + exp + m -> exp + (n + m)
k0 * v ^ n + exp + k1 * v ^ n -> exp + (k0 + k1) * v ^ n
"""
assert node.is_op(OP_ADD)
p = []
# Collect all nodes that can be combined:
# a ^ e = 1 * a ^ e
# c * a = c * a ^ 1
# c * a ^ e
# a = 1 * a ^ 1
#
# Identifier nodes of all polynomes, tuple format is:
# (root, exponent, coefficient, literal_coefficient)
polys = []
if verbose: # pragma: nocover
print 'match combine factors:', node
for n in Scope(node):
polynome = n.extract_polynome_properties()
if verbose: # pragma: nocover
print 'n:', n, 'polynome:', polynome
if polynome:
polys.append((n, polynome))
# Each combination of powers of the same value and polynome can be added
if len(polys) >= 2:
for left, right in combinations(polys, 2):
n0, p0 = left
n1, p1 = right
c0, r0, e0 = p0
c1, r1, e1 = p1
# Both numeric root and same exponent -> combine coefficients and
# roots, or: same root and exponent -> combine coefficients.
# TODO: Addition with zero, e.g. a + 0 -> a
if c0 == 1 and c1 == 1 and e0 == 1 and e1 == 1 \
and all(map(is_numeric_or_negated_numeric, [r0, r1])):
# 2 + 3 -> 5
# 2 + -3 -> -1
# -2 + 3 -> 1
# -2 + -3 -> -5
p.append(P(node, add_numerics, (n0, n1, r0, r1)))
elif c0.is_numeric() and c1.is_numeric() and r0 == r1 and e0 == e1:
# 2a + 2a -> 4a
# a + 2a -> 3a
# 2a + a -> 3a
# a + a -> 2a
p.append(P(node, combine_polynomes, (n0, n1, c0, c1, r0, e0)))
return p
def combine_polynomes(root, args):
"""
Combine two multiplications of any polynome in an n-ary plus.
Synopsis:
c0 * a ^ b + c1 * a ^ b -> (c0 + c1) * a ^ b
"""
n0, n1, c0, c1, r, e = args
# a ^ 1 -> a
if e == 1:
power = r
else:
power = r ** e
scope = Scope(root)
# Replace the left node with the new expression:
# (c0 + c1) * a ^ b
# a, b and c are from 'left', d is from 'right'.
scope.remove(n0, (c0 + c1) * power)
# Remove the right node
scope.remove(n1)
return scope.as_nary_node()
from itertools import combinations
from ..node import ExpressionNode as N, ExpressionLeaf as L, Scope, \
OP_NEG, OP_MUL, OP_DIV, OP_POW, OP_ADD
OP_MUL, OP_DIV, OP_POW, OP_ADD, negate
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
......@@ -12,21 +12,23 @@ def match_add_exponents(node):
a * a^q -> a^(1 + q)
a^p * a -> a^(p + 1)
a * a -> a^(1 + 1)
-a * a^q -> -a^(1 + q)
"""
assert node.is_op(OP_MUL)
p = []
powers = {}
scope = Scope(node)
for n in Scope(node):
for n in scope:
# Order powers by their roots, e.g. a^p and a^q are put in the same
# list because of the mutual 'a'
if n.is_identifier():
s = n
s = negate(n, 0)
exponent = L(1)
elif n.is_op(OP_POW):
# Order powers by their roots, e.g. a^p and a^q are put in the same
# list because of the mutual 'a'
s, exponent = n
else:
else: # pragma: nocover
continue
s_str = str(s)
......@@ -41,7 +43,7 @@ def match_add_exponents(node):
# create a single power with that root
if len(occurrences) > 1:
for (n0, e1, a0), (n1, e2, a1) in combinations(occurrences, 2):
p.append(P(node, add_exponents, (n0, n1, a0, e1, e2)))
p.append(P(node, add_exponents, (scope, n0, n1, a0, e1, e2)))
return p
......@@ -50,11 +52,12 @@ def add_exponents(root, args):
"""
a^p * a^q -> a^(p + q)
"""
n0, n1, a, p, q = args
scope = Scope(root)
scope, n0, n1, a, p, q = args
# TODO: combine exponent negations
# Replace the left node with the new expression
scope.remove(n0, a ** (p + q))
scope.replace(n0, (a ** (p + q)).negate(n0.negated + n1.negated))
# Remove the right node
scope.remove(n1)
......@@ -62,7 +65,7 @@ def add_exponents(root, args):
return scope.as_nary_node()
MESSAGES[add_exponents] = _('Add the exponents of {1} and {2}.')
MESSAGES[add_exponents] = _('Add the exponents of {2} and {3}.')
def match_subtract_exponents(node):
......@@ -91,6 +94,18 @@ def match_subtract_exponents(node):
return []
def subtract_exponents(root, args):
"""
a^p / a^q -> a^(p - q)
"""
a, p, q = args
return a ** (p - q)
MESSAGES[subtract_exponents] = _('Substract the exponents {2} and {3}.')
def match_multiply_exponents(node):
"""
(a^p)^q -> a^(pq)
......@@ -105,34 +120,102 @@ def match_multiply_exponents(node):
return []
def multiply_exponents(root, args):
"""
(a^p)^q -> a^(pq)
"""
a, p, q = args
return a ** (p * q)
MESSAGES[multiply_exponents] = _('Multiply the exponents {2} and {3}.')
def match_duplicate_exponent(node):
"""
(ab)^p -> a^p * b^p
"""
assert node.is_op(OP_POW)
left, right = node
root, exponent = node
if left.is_op(OP_MUL):
return [P(node, duplicate_exponent, (list(Scope(left)), right))]
if root.is_op(OP_MUL):
return [P(node, duplicate_exponent, (list(Scope(root)), exponent))]
return []
def duplicate_exponent(root, args):
"""
(ab)^p -> a^p * b^p
(abc)^p -> a^p * b^p * c^p
"""
ab, p = args
result = ab[0] ** p
for b in ab[1:]:
result *= b ** p
return result
MESSAGES[duplicate_exponent] = _('Duplicate the exponent {2}.')
def match_raised_fraction(node):
"""
(a / b) ^ p -> a^p / b^p
"""
assert node.is_op(OP_POW)
root, exponent = node
if root.is_op(OP_DIV):
return [P(node, raised_fraction, (root, exponent))]
return []
def raised_fraction(root, args):
"""
(a / b) ^ p -> a^p / b^p
"""
(a, b), p = args
return a ** p / b ** p
MESSAGES[raised_fraction] = _('Apply the exponent {2} to the nominator and'
' denominator of fraction {1}.')
def match_remove_negative_exponent(node):
"""
a^-p -> 1 / a^p
a ^ -p -> 1 / a ^ p
"""
assert node.is_op(OP_POW)
left, right = node
a, p = node
if right.is_op(OP_NEG):
return [P(node, remove_negative_exponent, (left, right[0]))]
if p.negated:
return [P(node, remove_negative_exponent, (a, p))]
return []
def remove_negative_exponent(root, args):
"""
a^-p -> 1 / a^p
"""
a, p = args
return L(1) / a ** p.reduce_negation()
MESSAGES[remove_negative_exponent] = _('Remove negative exponent {2}.')
def match_exponent_to_root(node):
"""
a^(1 / m) -> sqrt(a, m)
......@@ -148,6 +231,16 @@ def match_exponent_to_root(node):
return []
def exponent_to_root(root, args):
"""
a^(1 / m) -> sqrt(a, m)
a^(n / m) -> sqrt(a^n, m)
"""
a, n, m = args
return N('sqrt', a if n == 1 else a ** n, m)
def match_extend_exponent(node):
"""
(a + ... + z)^n -> (a + ... + z)(a + ... + z)^(n - 1) # n > 1
......@@ -176,64 +269,38 @@ def extend_exponent(root, args):
return left * left
def subtract_exponents(root, args):
def match_constant_exponent(node):
"""
a^p / a^q -> a^(p - q)
(a + ... + z)^n -> (a + ... + z)(a + ... + z)^(n - 1) # n > 1
"""
a, p, q = args
return a ** (p - q)
MESSAGES[subtract_exponents] = _('Substract the exponents {2} and {3}.')
assert node.is_op(OP_POW)
def multiply_exponents(root, args):
"""
(a^p)^q -> a^(pq)
"""
a, p, q = args
exponent = node[1]
return a ** (p * q)
if exponent == 0:
return [P(node, remove_power_of_zero, ())]
if exponent == 1:
return [P(node, remove_power_of_one, ())]
MESSAGES[multiply_exponents] = _('Multiply the exponents {2} and {3}.')
return []
def duplicate_exponent(root, args):
def remove_power_of_zero(root, args):
"""
(ab)^p -> a^p * b^p
(abc)^p -> a^p * b^p * c^p
a ^ 0 -> 1
"""
ab, p = args
result = ab[0] ** p
for b in ab[1:]:
result *= b ** p
return L(1)
return result
MESSAGES[remove_power_of_zero] = _('Power of zero {0} rewrites to 1.')
MESSAGES[duplicate_exponent] = _('Duplicate the exponent {2}.')
def remove_negative_exponent(root, args):
def remove_power_of_one(root, args):
"""
a^-p -> 1 / a^p
a ^ 1 -> a
"""
a, p = args
return L(1) / a ** p
MESSAGES[remove_negative_exponent] = _('Remove negative exponent {2}.')
return root[0]
def exponent_to_root(root, args):
"""
a^(1 / m) -> sqrt(a, m)
a^(n / m) -> sqrt(a^n, m)
"""
a, n, m = args
return N('sqrt', a if n == 1 else a ** n, m)
MESSAGES[remove_power_of_one] = _('Remove the power of one in {0}.')
from itertools import product, combinations
from ..node import Scope, OP_ADD, OP_MUL
from ..possibilities import Possibility as P, MESSAGES
from ..translate import _
def match_sort_multiplicants(node):
"""
Sort multiplicant factors by swapping
x * 2 -> 2x
"""
assert node.is_op(OP_MUL)
p = []
scope = Scope(node)
for i, n in enumerate(scope[1:]):
left_nb = scope[i]
if n.is_numeric() and not left_nb.is_numeric():
p.append(P(node, move_constant, (scope, n, left_nb)))
return p
def move_constant(root, args):
scope, constant, destination = args
scope.replace(destination, constant * destination)
scope.remove(constant)
return scope.as_nary_node()
MESSAGES[move_constant] = \
_('Move constant {2} to the left of the multiplication {0}.')
def gcd(a, b):
from ..node import ExpressionLeaf as L, OP_MUL, OP_DIV
def greatest_common_divisor(a, b):
"""
Return greatest common divisor using Euclid's Algorithm.
Return greatest common divisor of a and b using Euclid's Algorithm.
"""
while b:
a, b = b, a % b
......@@ -12,7 +15,7 @@ def lcm(a, b):
"""
Return least common multiple of a and b.
"""
return a * b // gcd(a, b)
return a * b // greatest_common_divisor(a, b)
def least_common_multiple(*args):
......@@ -20,3 +23,51 @@ def least_common_multiple(*args):
Return lcm of args.
"""
return reduce(lcm, args)
def is_fraction(node, nominator, denominator):
"""
Check if a node represents the fraction of a given nominator and
denominator.
>>> from ..node import ExpressionLeaf as L
>>> l1, l2, a = L('a'), L(1), L(2)
>>> is_fraction(a / l2, a, 2)
True
>>> is_fraction(l1 / l2 * a, a, 2)
True
>>> is_fraction(l2 / l1 * a, a, 2)
False
"""
if node.is_op(OP_DIV):
nom, denom = node
return nom == nominator and denom == denominator
if node.is_op(OP_MUL):
# 1 / denominator * nominator
# nominator * 1 / denominator
left, right = node
fraction = L(1) / denominator
return (left == nominator and right == fraction) \
or (right == nominator and left == fraction)
return False
def partition(callback, iterable):
"""
Partition an iterable into two parts using a callback that returns a
boolean.
Example:
>>> partition(lambda x: x & 1, range(6))
([1, 3, 5], [0, 2, 4])
"""
a, b = [], []
for item in iterable:
(a if callback(item) else b).append(item)
return a, b
from rules.sort import move_constant
from rules.numerics import reduce_fraction_constants, fraction_to_int_fraction
def pick_suggestion(possibilities):
if not possibilities:
return
# TODO: pick the best suggestion.
for suggestion, p in enumerate(possibilities + [None]):
if p and p.handler not in [move_constant, fraction_to_int_fraction,
reduce_fraction_constants]:
break
if not p:
return possibilities[0]
return possibilities[suggestion]
# vim: set fileencoding=utf-8 :
SQRT = '√'
CBRT = '∛'
FORT = '∜'
PI = 'π'
INFINITY = '∞'
SUP = {
'0': '⁰',
'1': '¹',
'2': '²',
'3': '³',
'3': '⁴',
'5': '⁵',
'6': '⁶',
'7': '⁷',
'8': '⁸',
'9': '⁹',
}
DOT = '⋅'
from src.parser import Parser
from tests.parser import ParserWrapper
from src.possibilities import apply_suggestion
def validate(exp, result):
"""
Validate that exp =>* result.
"""
parser = ParserWrapper(Parser)
result = parser.run([result])
return traverse_preorder(parser, exp, result)
def traverse_preorder(parser, exp, result):
"""
Traverse the possibility tree using pre-order traversal.
"""
root = parser.run([exp])
if root.equals(result):
return root
possibilities = parser.parser.possibilities
for p in possibilities:
child = apply_suggestion(root, p)
next_root = traverse_preorder(parser, str(child), result)
if next_root:
return next_root
......@@ -44,16 +44,26 @@ class RulesTestCase(unittest.TestCase):
try:
for i, exp in enumerate(rewrite_chain[:-1]):
self.assertMultiLineEqual(str(rewrite(exp)),
str(rewrite_chain[i+1]))
except AssertionError: # pragma: nocover
print 'rewrite failed: "%s" -> "%s"' \
% (str(exp), str(rewrite_chain[i+1]))
print 'rewrite chain index: %d' % i
print 'rewrite chain: ---'
str(rewrite_chain[i + 1]))
except AssertionError as e: # pragma: nocover
msg = e.args[0]
for i, c in enumerate(rewrite_chain):
print '%2d %s' % (i, str(c))
msg += '-' * 30 + '\n'
print '-' * 30
msg += 'rewrite failed: "%s" -> "%s"\n' \
% (str(exp), str(rewrite_chain[i + 1]))
msg += 'rewrite chain: ---\n'
chain = []
for j, c in enumerate(rewrite_chain):
if i == j:
chain.append('%2d %s <-- error' % (j, str(c)))
else:
chain.append('%2d %s' % (j, str(c)))
e.message = msg + '\n'.join(chain)
e.args = (e.message,) + e.args[1:]
raise
......@@ -11,13 +11,13 @@ class TestB1Ch08(unittest.TestCase):
run_expressions(Parser, [
('6*5^2', L(6) * L(5) ** 2),
('-5*(-3)^2', (-L(5)) * (-L(3)) ** 2),
('7p-3p', L(7) * 'p' + -(L(3) * 'p')),
('7p-3p', L(7) * 'p' + (-L(3) * 'p')),
('-5a*-6', (-L(5)) * 'a' * (-L(6))),
('3a-8--5-2a', L(3) * 'a' + -L(8) + -(-L(5)) + -(L(2) * 'a')),
('3a-8--5-2a', L(3) * 'a' + -L(8) + (--L(5)) + (-L(2) * 'a')),
])
def test_diagnostic_test_application(self):
apply_expressions(Parser, [
('7p+2p', 1, (L(7) + 2) * 'p'),
#('7p-3p', 1, (L(7) - 3) * 'p'),
('7p-3p', 1, (L(7) + -L(3)) * 'p'),
])
......@@ -9,12 +9,12 @@ class TestB1Ch10(unittest.TestCase):
def test_diagnostic_test(self):
run_expressions(Parser, [
('5(a-2b)', L(5) * (L('a') + -(L(2) * 'b'))),
('5(a-2b)', L(5) * (L('a') + (-L(2) * 'b'))),
('-(3a+6b)', -(L(3) * L('a') + L(6) * 'b')),
('18-(a-12)', L(18) + -(L('a') + -L(12))),
('-p-q+5(p-q)-3q-2(p-q)',
-L('p') + -L('q') + L(5) * (L('p') + -L('q')) + -(L(3) * 'q') \
+ - (L(2) * (L('p') + -L('q')))
-L('p') + -L('q') + L(5) * (L('p') + -L('q')) + (-L(3) * 'q') \
+ (-L(2) * (L('p') + -L('q')))
),
('(2+3/7)^4',
N('^', N('+', L(2), N('/', L(3), L(7))), L(4))
......
......@@ -7,9 +7,4 @@ from tests.parser import ParserWrapper
class TestException(unittest.TestCase):
def test_raise(self):
try:
ParserWrapper(Parser).run(['raise'])
except RuntimeError:
return
raise AssertionError('Expected raised RuntimeError!') # pragma: nocover
self.assertRaises(RuntimeError, ParserWrapper(Parser).run, ['raise'])
......@@ -4,10 +4,10 @@ from tests.rulestestcase import RulesTestCase as TestCase, rewrite
class TestLeidenOefenopgave(TestCase):
def test_1_1(self):
for chain in [['-5(x2 - 3x + 6)', '-5(x ^ 2 - 3x) - 5 * 6',
'-5 * x ^ 2 - 5 * -3x - 5 * 6',
'-5 * x ^ 2 - -15x - 5 * 6',
'-5 * x ^ 2 + 15x - 5 * 6',
'-5 * x ^ 2 + 15x - 30',
'-5x ^ 2 - 5 * -3x - 5 * 6',
'-5x ^ 2 - -15x - 5 * 6',
'-5x ^ 2 + 15x - 5 * 6',
'-5x ^ 2 + 15x - 30',
],
]:
self.assertRewrite(chain)
......@@ -15,80 +15,103 @@ class TestLeidenOefenopgave(TestCase):
return
for exp, solution in [
('-5(x2 - 3x + 6)', '-30 + 15 * x - 5 * x ^ 2'),
('(x+1)^2', 'x ^ 2 + 2 * x + 1'),
('(x-1)^2', 'x ^ 2 - 2 * x + 1'),
('(2x+x)*x', '3 * x ^ 2'),
('-2(6x-4)^2*x', '-72 * x^3 + 96 * x ^ 2 + 32 * x'),
('-5(x2 - 3x + 6)', '-30 + 15x - 5x ^ 2'),
('(x+1)^2', 'x ^ 2 + 2x + 1'),
('(x-1)^2', 'x ^ 2 - 2x + 1'),
('(2x+x)*x', '3x ^ 2'),
('-2(6x-4)^2*x', '-72x ^ 3 + 96x ^ 2 + 32x'),
('(4x + 5) * -(5 - 4x)', '16x^2 - 25'),
]:
self.assertEqual(str(rewrite(exp)), solution)
def test_1_2(self):
for chain in [['(x+1)^3', '(x + 1)(x + 1) ^ 2',
self.assertRewrite(['(x+1)^3', '(x + 1)(x + 1) ^ 2',
'(x + 1)(x + 1)(x + 1)',
'(xx + x * 1 + 1x + 1 * 1)(x + 1)',
'(x ^ (1 + 1) + x * 1 + 1x + 1 * 1)(x + 1)',
'(x ^ 2 + x * 1 + 1x + 1 * 1)(x + 1)',
'(x ^ 2 + x + 1x + 1 * 1)(x + 1)',
'(x ^ 2 + x + x + 1 * 1)(x + 1)',
'(x ^ 2 + (1 + 1)x + 1 * 1)(x + 1)',
'(x ^ 2 + 2x + 1 * 1)(x + 1)',
'(x ^ 2 + 2x + 1)(x + 1)',
'(x ^ 2 + 2x)x + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'x * x ^ 2 + x * 2x + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'xx ^ 2 + x * 2x + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'x ^ (1 + 2) + x * 2x + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'x ^ 3 + x * 2x + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'x ^ 3 + x ^ (1 + 1) * 2 + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'x ^ 3 + x ^ 2 * 2 + (x ^ 2 + 2x) * 1 + 1x + 1 * 1',
'x ^ 3 + x ^ 2 * 2 + 1 * x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + (2 + 1) * x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + 3 * x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + 3 * x ^ 2 + 2x + 1x + 1 * 1',
'x ^ 3 + 3 * x ^ 2 + (2 + 1)x + 1 * 1',
'x ^ 3 + 3 * x ^ 2 + 3x + 1 * 1',
'x ^ 3 + 3 * x ^ 2 + 3x + 1',
]
]:
self.assertRewrite(chain)
'x ^ 3 + x ^ 2 * 2 + 1x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + x ^ 2 * 2 + x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + (2 + 1)x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + 3x ^ 2 + 1 * 2x + 1x + 1 * 1',
'x ^ 3 + 3x ^ 2 + 2x + 1x + 1 * 1',
'x ^ 3 + 3x ^ 2 + 2x + x + 1 * 1',
'x ^ 3 + 3x ^ 2 + (2 + 1)x + 1 * 1',
'x ^ 3 + 3x ^ 2 + 3x + 1 * 1',
'x ^ 3 + 3x ^ 2 + 3x + 1',
])
def test_1_3(self):
# (x+1)^2 -> x^2 + 2x + 1
for chain in [['(x+1)^2', '(x + 1)(x + 1)',
self.assertRewrite(['(x+1)^2', '(x + 1)(x + 1)',
'xx + x * 1 + 1x + 1 * 1',
'x ^ (1 + 1) + x * 1 + 1x + 1 * 1',
'x ^ 2 + x * 1 + 1x + 1 * 1',
'x ^ 2 + x + 1x + 1 * 1',
'x ^ 2 + x + x + 1 * 1',
'x ^ 2 + (1 + 1)x + 1 * 1',
'x ^ 2 + 2x + 1 * 1',
'x ^ 2 + 2x + 1'],
]:
self.assertRewrite(chain)
'x ^ 2 + 2x + 1',
])
def test_1_4(self):
# (x-1)^2 -> x^2 - 2x + 1
for chain in [['(x-1)^2', '(x - 1)(x - 1)',
self.assertRewrite(['(x-1)^2', '(x - 1)(x - 1)',
'xx + x * -1 - 1x - 1 * -1',
'x ^ (1 + 1) + x * -1 - 1x - 1 * -1',
'x ^ 2 + x * -1 - 1x - 1 * -1',
# FIXME: 'x ^ 2 + (-1 - 1)x - 1 * -1',
# FIXME: 'x ^ 2 - 2x - 1 * -1',
# FIXME: 'x ^ 2 - 2x - -1',
# FIXME: 'x ^ 2 - 2x + 1',
]]:
self.assertRewrite(chain)
'x ^ 2 - x * 1 - 1x - 1 * -1',
'x ^ 2 - x - 1x - 1 * -1',
'x ^ 2 - x - x - 1 * -1',
'x ^ 2 + (1 + 1) * -x - 1 * -1',
'x ^ 2 + 2 * -x - 1 * -1',
'x ^ 2 - 2x - 1 * -1',
'x ^ 2 - 2x - -1',
'x ^ 2 - 2x + 1',
])
def test_1_4_1(self):
self.assertRewrite(['x * -1 + 1x', '(-1 + 1)x', '0x',]) # FIXME: '0'])
self.assertRewrite(['x * -1 + 1x',
'-x * 1 + 1x',
'-x + 1x',
'-x + x',
'(-1 + 1)x',
'0x',
'0'])
def test_1_4_2(self):
# FIXME: self.assertRewrite(['x * -1 - 1x', '(-1 + -1)x', '-2x'])
pass
self.assertRewrite(['x * -1 - 1x',
'-x * 1 - 1x',
'-x - 1x',
'-x - x',
'(1 + 1) * -x',
'2 * -x',
'-2x'])
def test_1_4_3(self):
# FIXME: self.assertRewrite(['x * -1 + x * -1', '(-1 + -1)x', '-2x'])
pass
self.assertRewrite(['x * -1 + x * -1',
'-x * 1 + x * -1',
'-x + x * -1',
'-x - x * 1',
'-x - x',
'(1 + 1) * -x',
'2 * -x',
'-2x'])
def test_1_5(self):
self.assertRewrite(['(2x + x)x', '(2 + 1)xx', '3xx',
'3 * x ^ (1 + 1)', '3 * x ^ 2'])
'3x ^ (1 + 1)', '3x ^ 2'])
def test_1_7(self):
self.assertRewrite(['(4x + 5) * -(5 - 4x)',
......@@ -97,15 +120,14 @@ class TestLeidenOefenopgave(TestCase):
'4x * -5 + 4x * 4x + 5 * -5 + 5 * 4x',
'-20x + 4x * 4x + 5 * -5 + 5 * 4x',
'-20x + 16xx + 5 * -5 + 5 * 4x',
'-20x + 16 * x ^ (1 + 1) + 5 * -5 + 5 * 4x',
'-20x + 16 * x ^ 2 + 5 * -5 + 5 * 4x',
'-20x + 16 * x ^ 2 - 25 + 5 * 4x',
'-20x + 16 * x ^ 2 - 25 + 20x',
'(-20 + 20)x + 16 * x ^ 2 - 25',
'0x + 16 * x ^ 2 - 25',
'0 + 16 * x ^ 2 - 25',
'-25 + 16 * x ^ 2'])
# FIXME: '16 * x ^ 2 - 25'])
'-20x + 16x ^ (1 + 1) + 5 * -5 + 5 * 4x',
'-20x + 16x ^ 2 + 5 * -5 + 5 * 4x',
'-20x + 16x ^ 2 - 25 + 5 * 4x',
'-20x + 16x ^ 2 - 25 + 20x',
'(-20 + 20)x + 16x ^ 2 - 25',
'0x + 16x ^ 2 - 25',
'0 + 16x ^ 2 - 25',
'16x ^ 2 - 25'])
def test_2(self):
pass
......@@ -113,18 +135,29 @@ class TestLeidenOefenopgave(TestCase):
def test_3(self):
pass
def test_4(self):
for exp, solution in [
('2/15 + 1/4', '8 / 60 + 15 / 60'),
('8/60 + 15/60', '(8 + 15) / 60'),
('(8 + 15) / 60', '23 / 60'),
('2/7 - 4/11', '22 / 77 - 28 / 77'),
('22/77 - 28/77', '(22 - 28) / 77'),
('(22 - 28)/77', '-6 / 77'),
# FIXME: ('(7/3) * (3/5)', '7 / 5'),
# FIXME: ('(3/4) / (5/6)', '9 / 10'),
# FIXME: ('1/4 * 1/x', '1 / (4x)'),
# FIXME: ('(3/x^2) / (x/7)', '21 / x^3'),
# FIXME: ('1/x + 2/(x+1)', '(3x + 1) / (x * (x + 1))'),
]:
self.assertEqual(str(rewrite(exp)), solution)
def test_4_1(self):
self.assertRewrite(['2/15 + 1/4', '8 / 60 + 15 / 60', '(8 + 15) / 60',
'23 / 60'])
def test_4_2(self):
self.assertRewrite(['2/7 - 4/11', '22 / 77 - 28 / 77',
'(22 - 28) / 77', '-6 / 77'])
def test_4_3(self):
self.assertRewrite(['(7/3) * (3/5)',
'7 * 3 / (3 * 5)',
'21 / (3 * 5)',
'21 / 15',
'7 / 5'])
#def test_4_4(self):
# self.assertRewrite(['(3/4) / (5/6)', '9 / 10'])
def test_4_5(self):
self.assertRewrite(['1/4 * 1/x', '1 / 4 / x', '1 / (4x)'])
#def test_4_6(self):
# self.assertRewrite(['(3/x^2) / (x/7)', '21 / x^3'])
#def test_4_7(self):
# self.assertRewrite(['1/x + 2/(x+1)', '(3x + 1) / (x * (x + 1))'])
from tests.rulestestcase import RulesTestCase as TestCase
class TestLeidenOefenopgaveV12(TestCase):
def test_1_a(self):
self.assertRewrite(['-5(x2 - 3x + 6)',
'-5(x ^ 2 - 3x) - 5 * 6',
'-5x ^ 2 - 5 * -3x - 5 * 6',
'-5x ^ 2 - -15x - 5 * 6',
'-5x ^ 2 + 15x - 5 * 6',
'-5x ^ 2 + 15x - 30'])
def test_1_d(self):
self.assertRewrite(['(2x + x)x',
'(2 + 1)xx',
'3xx',
'3x ^ (1 + 1)',
'3x ^ 2'])
def test_1_e(self):
self.assertRewrite([
'-2(6x - 4) ^ 2x',
'-2(6x - 4)(6x - 4)x',
'(-2 * 6x - 2 * -4)(6x - 4)x',
'(-12x - 2 * -4)(6x - 4)x',
'(-12x - -8)(6x - 4)x',
'(-12x + 8)(6x - 4)x',
'(-12x * 6x - 12x * -4 + 8 * 6x + 8 * -4)x',
'(-72xx - 12x * -4 + 8 * 6x + 8 * -4)x',
'(-72x ^ (1 + 1) - 12x * -4 + 8 * 6x + 8 * -4)x',
'(-72x ^ 2 - 12x * -4 + 8 * 6x + 8 * -4)x',
'(-72x ^ 2 - -48x + 8 * 6x + 8 * -4)x',
'(-72x ^ 2 + 48x + 8 * 6x + 8 * -4)x',
'(-72x ^ 2 + 48x + 48x + 8 * -4)x',
'(-72x ^ 2 + (1 + 1) * 48x + 8 * -4)x',
'(-72x ^ 2 + 2 * 48x + 8 * -4)x',
'(-72x ^ 2 + 96x + 8 * -4)x',
'(-72x ^ 2 + 96x - 32)x',
'x(-72x ^ 2 + 96x) + x * -32',
'x * -72x ^ 2 + x * 96x + x * -32',
'-x * 72x ^ 2 + x * 96x + x * -32',
'-x ^ (1 + 2) * 72 + x * 96x + x * -32',
'-x ^ 3 * 72 + x * 96x + x * -32',
'-x ^ 3 * 72 + x ^ (1 + 1) * 96 + x * -32',
'-x ^ 3 * 72 + x ^ 2 * 96 + x * -32',
'-x ^ 3 * 72 + x ^ 2 * 96 - x * 32',
'72 * -x ^ 3 + x ^ 2 * 96 - x * 32',
'-72x ^ 3 + x ^ 2 * 96 - x * 32',
'-72x ^ 3 + 96x ^ 2 - x * 32',
'-72x ^ 3 + 96x ^ 2 + 32 * -x',
'-72x ^ 3 + 96x ^ 2 - 32x',
])
def test_2_a(self):
self.assertRewrite([
'(a2b^-1)^3(ab2)',
'(a ^ 2 * (1 / b ^ 1)) ^ 3 * ab ^ 2',
'(a ^ 2 * (1 / b)) ^ 3 * ab ^ 2',
'(a ^ 2 * 1 / b) ^ 3 * ab ^ 2',
'(a ^ 2 / b) ^ 3 * ab ^ 2',
'(a ^ 2) ^ 3 / b ^ 3 * ab ^ 2',
'a ^ (2 * 3) / b ^ 3 * ab ^ 2',
'a ^ 6 / b ^ 3 * ab ^ 2',
'aa ^ 6 / b ^ 3 * b ^ 2',
'a ^ (1 + 6) / b ^ 3 * b ^ 2',
'a ^ 7 / b ^ 3 * b ^ 2',
'b ^ 2 * a ^ 7 / b ^ 3',
'b ^ 2 / b ^ 3 * a ^ 7 / 1',
'b ^ (2 - 3)a ^ 7 / 1',
'b ^ -1 * a ^ 7 / 1',
'1 / b ^ 1 * a ^ 7 / 1',
'1 / b * a ^ 7 / 1',
'a ^ 7 * 1 / b / 1',
'a ^ 7 / b / 1',
'a ^ 7 / b',
])
def test_2_b(self):
self.assertRewrite([
'a3b2a3',
'a ^ (3 + 3)b ^ 2',
'a ^ 6 * b ^ 2',
])
def test_2_c(self):
self.assertRewrite([
'a5+a3',
'a ^ 5 + a ^ 3',
])
def test_2_d(self):
self.assertRewrite([
'a2+a2',
'(1 + 1)a ^ 2',
'2a ^ 2',
])
def test_2_e(self):
self.assertRewrite([
'4b^-2',
'4(1 / b ^ 2)',
'4 * 1 / b ^ 2',
])
def test_2_f(self):
self.assertRewrite([
'(4b) ^ -2',
'4 ^ -2 * b ^ -2',
'1 / 4 ^ 2 * b ^ -2',
'1 / 16 * b ^ -2',
'1 / 16 * (1 / b ^ 2)',
'1 * 1 / (16b ^ 2)',
'1 / (16b ^ 2)',
])
......@@ -30,25 +30,17 @@ class TestNode(RulesTestCase):
self.assertTrue(N('+', *self.l[:2]).is_op(OP_ADD))
self.assertFalse(N('-', *self.l[:2]).is_op(OP_ADD))
def test_is_op_or_negated(self):
self.assertTrue(N('+', *self.l[:2]).is_op_or_negated(OP_ADD))
self.assertTrue(N('-', N('+', *self.l[:2])).is_op_or_negated(OP_ADD))
self.assertFalse(N('-', *self.l[:2]).is_op_or_negated(OP_ADD))
self.assertFalse(self.l[0].is_op_or_negated(OP_ADD))
def test_is_leaf(self):
self.assertTrue(L(2).is_leaf)
self.assertFalse(N('+', *self.l[:2]).is_leaf)
def test_is_leaf_or_negated(self):
self.assertTrue(L(2).is_leaf_or_negated())
self.assertTrue(N('-', L(2)).is_leaf_or_negated())
self.assertFalse(N('+', *self.l[:2]).is_leaf_or_negated())
self.assertFalse(N('-', N('+', *self.l[:2])).is_leaf_or_negated())
def test_is_power(self):
self.assertTrue(N('^', *self.l[:2]).is_power())
self.assertFalse(N('+', *self.l[:2]).is_power())
self.assertTrue(N('^', *self.l[2:]).is_power())
self.assertFalse(N('+', *self.l[2:]).is_power())
def test_is_power_exponent(self):
self.assertTrue(N('^', *self.l[2:]).is_power(5))
self.assertFalse(N('^', *self.l[2:]).is_power(2))
def test_is_nary(self):
self.assertTrue(N('+', *self.l[:2]).is_nary())
......@@ -173,6 +165,13 @@ class TestNode(RulesTestCase):
m0, m1 = tree('-5 * -3,-5 * 6')
self.assertFalse(m0.equals(m1))
def test_equals_ignore_negation(self):
p0, p1 = tree('-(a + b), a + b')
self.assertTrue(p0.equals(p1, ignore_negation=True))
a0, a1 = tree('-a,a')
self.assertTrue(a0.equals(a1, ignore_negation=True))
def test_scope___init__(self):
self.assertEqual(self.scope.node, self.n)
self.assertEqual(self.scope.nodes, [self.a, self.b, self.cd])
......@@ -185,14 +184,14 @@ class TestNode(RulesTestCase):
self.scope.remove(self.cd)
self.assertEqual(self.scope.nodes, [self.a, self.b])
def test_scope_remove_replace(self):
self.scope.remove(self.cd, self.f)
self.assertEqual(self.scope.nodes, [self.a, self.b, self.f])
def test_scope_remove_error(self):
with self.assertRaises(ValueError):
self.scope.remove(self.f)
def test_scope_replace(self):
self.scope.replace(self.cd, self.f)
self.assertEqual(self.scope.nodes, [self.a, self.b, self.f])
def test_nary_node(self):
a, b, c, d = tree('a,b,c,d')
......@@ -205,3 +204,8 @@ class TestNode(RulesTestCase):
def test_scope_as_nary_node(self):
self.assertEqualNodes(self.scope.as_nary_node(), self.n)
def test_scope_as_nary_node_negated(self):
n = tree('-(a + b)')
self.assertEqualNodes(Scope(n).as_nary_node(), n)
self.assertEqualNodes(Scope(-n).as_nary_node(), -n)
......@@ -4,6 +4,8 @@ import unittest
from src.parser import Parser
from src.node import ExpressionNode as Node, ExpressionLeaf as Leaf
from tests.parser import ParserWrapper, run_expressions, line, graph
from tests.rulestestcase import tree
from src.rules.goniometry import sin, cos
class TestParser(unittest.TestCase):
......@@ -15,11 +17,42 @@ class TestParser(unittest.TestCase):
run_expressions(Parser, [('a', Leaf('a'))])
def test_graph(self):
assert graph(Parser, '4a') == ("""
self.assertEqual(graph(Parser, '4a'), ("""
*
╭┴╮
4 a
""").replace('\n ', '\n')[1:-1]
""").replace('\n ', '\n')[1:-1])
def test_line(self):
self.assertEqual(line(Parser, '4-a'), '4 - a')
def test_reset_after_failure(self):
parser = ParserWrapper(Parser)
parser.run(['-(3a+6b)'])
possibilities1 = parser.parser.possibilities
self.assertNotEqual(possibilities1, [])
parser.run(['5+2*6'])
possibilities2 = parser.parser.possibilities
self.assertNotEqual(possibilities2, [])
self.assertNotEqual(possibilities1, possibilities2)
def test_moved_negation(self):
a, b = tree('a,b')
self.assertEqual(tree('-ab'), (-a) * b)
self.assertEqual(tree('-(ab)'), (-a) * b)
self.assertEqual(tree('-a / b'), (-a) / b)
self.assertEqual(tree('-(a / b)'), (-a) / b)
def test_functions(self):
root, x = tree('sin x, x')
self.assertEqual(root, sin(x))
self.assertEqual(tree('sin x ^ 2'), sin(x) ** 2)
self.assertEqual(tree('sin(x) ^ 2'), sin(x) ** 2)
self.assertEqual(tree('sin (x) ^ 2'), sin(x) ** 2)
self.assertEqual(tree('sin(x ^ 2)'), sin(x ** 2))
self.assertEqual(tree('sin cos x'), sin(cos(x)))
self.assertEqual(tree('sin cos x ^ 2'), sin(cos(x)) ** 2)
......@@ -45,7 +45,7 @@ class TestPossibilities(unittest.TestCase):
possibilities = parser.parser.possibilities
self.assertEqual('\n'.join([repr(pos) for pos in possibilities]),
'<Possibility root="3 + 4" handler=add_numerics' \
' args=(3, 4, 3, 4)>')
' args=(<Scope of "3 + 4">, 3, 4)>')
def test_multiple_runs(self):
parser = ParserWrapper(Parser)
......@@ -53,21 +53,19 @@ class TestPossibilities(unittest.TestCase):
possibilities = parser.parser.possibilities
self.assertEqual('\n'.join([repr(pos) for pos in possibilities]),
'<Possibility root="1 + 2" handler=add_numerics' \
' args=(1, 2, 1, 2)>')
' args=(<Scope of "1 + 2">, 1, 2)>')
# Keep previous possibilities (skip whitespace lines)
# Remove previous possibilities after second run() call.
parser.run(['', ' '])
possibilities = parser.parser.possibilities
self.assertEqual('\n'.join([repr(pos) for pos in possibilities]),
'<Possibility root="1 + 2" handler=add_numerics' \
' args=(1, 2, 1, 2)>')
self.assertEqual(possibilities, [])
# Overwrite previous possibilities with new ones
parser.run(['3+4'])
possibilities = parser.parser.possibilities
self.assertEqual('\n'.join([repr(pos) for pos in possibilities]),
'<Possibility root="3 + 4" handler=add_numerics' \
' args=(3, 4, 3, 4)>')
' args=(<Scope of "3 + 4">, 3, 4)>')
def test_filter_duplicates(self):
a, b = ab = tree('a + b')
......
from src.rules.fractions import match_constant_division, division_by_one, \
division_of_zero, division_by_self, match_add_constant_fractions, \
equalize_denominators, add_nominators
equalize_denominators, add_nominators, match_multiply_fractions, \
multiply_fractions, multiply_with_fraction, match_divide_fractions, \
divide_fraction, divide_by_fraction, match_equal_fraction_parts, \
divide_fraction_parts, extract_divided_roots
from src.node import Scope
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
......@@ -51,12 +55,14 @@ class TestRulesFractions(RulesTestCase):
n0, n1 = root = l1 / l2 + l3 / l4
possibilities = match_add_constant_fractions(root)
self.assertEqualPos(possibilities,
[P(root, equalize_denominators, (n0, n1, 4))])
[P(root, equalize_denominators, (Scope(root), n0, n1, 4)),
P(root, equalize_denominators, (Scope(root), n0, n1, 8))])
(((n0, n1), n2), n3), n4 = root = a + l1 / l2 + b + l3 / l4 + c
possibilities = match_add_constant_fractions(root)
self.assertEqualPos(possibilities,
[P(root, equalize_denominators, (n1, n3, 4))])
[P(root, equalize_denominators, (Scope(root), n1, n3, 4)),
P(root, equalize_denominators, (Scope(root), n1, n3, 8))])
n0, n1 = root = l2 / l4 + l3 / l4
possibilities = match_add_constant_fractions(root)
......@@ -74,7 +80,8 @@ class TestRulesFractions(RulesTestCase):
(((n0, n1), n2), n3), n4 = root = a + l2 / l2 + b + (-l3 / l4) + c
possibilities = match_add_constant_fractions(root)
self.assertEqualPos(possibilities,
[P(root, equalize_denominators, (n1, n3, 4))])
[P(root, equalize_denominators, (Scope(root), n1, n3, 4)),
P(root, equalize_denominators, (Scope(root), n1, n3, 8))])
(((n0, n1), n2), n3), n4 = root = a + l2 / l4 + b + (-l3 / l4) + c
possibilities = match_add_constant_fractions(root)
......@@ -85,22 +92,23 @@ class TestRulesFractions(RulesTestCase):
a, b, l1, l2, l3, l4 = tree('a,b,1,2,3,4')
n0, n1 = root = l1 / l2 + l3 / l4
self.assertEqualNodes(equalize_denominators(root, (n0, n1, 4)),
l2 / l4 + l3 / l4)
self.assertEqualNodes(equalize_denominators(root,
(Scope(root), n0, n1, 4)), l2 / l4 + l3 / l4)
n0, n1 = root = a / l2 + b / l4
self.assertEqualNodes(equalize_denominators(root, (n0, n1, 4)),
(l2 * a) / l4 + b / l4)
self.assertEqualNodes(equalize_denominators(root,
(Scope(root), n0, n1, 4)), (l2 * a) / l4 + b /
l4)
#2 / 2 - 3 / 4 -> 4 / 4 - 3 / 4 # Equalize denominators
n0, n1 = root = l1 / l2 + (-l3 / l4)
self.assertEqualNodes(equalize_denominators(root, (n0, n1, 4)),
l2 / l4 + (-l3 / l4))
self.assertEqualNodes(equalize_denominators(root,
(Scope(root), n0, n1, 4)), l2 / l4 + (-l3 / l4))
#2 / 2 - 3 / 4 -> 4 / 4 - 3 / 4 # Equalize denominators
n0, n1 = root = a / l2 + (-b / l4)
self.assertEqualNodes(equalize_denominators(root, (n0, n1, 4)),
(l2 * a) / l4 + (-b / l4))
self.assertEqualNodes(equalize_denominators(root,
(Scope(root), n0, n1, 4)), (l2 * a) / l4 + (-b / l4))
def test_add_nominators(self):
a, b, c = tree('a,b,c')
......@@ -118,3 +126,118 @@ class TestRulesFractions(RulesTestCase):
n0, n1 = root = a / -b + -c / -b
self.assertEqualNodes(add_nominators(root, (n0, n1)), (a + -c) / -b)
def test_match_multiply_fractions(self):
(a, b), (c, d) = ab, cd = root = tree('a / b * (c / d)')
self.assertEqualPos(match_multiply_fractions(root),
[P(root, multiply_fractions, (Scope(root), ab, cd))])
(ab, e), cd = root = tree('a / b * e * (c / d)')
self.assertEqualPos(match_multiply_fractions(root),
[P(root, multiply_fractions, (Scope(root), ab, cd)),
P(root, multiply_with_fraction, (Scope(root), e, ab)),
P(root, multiply_with_fraction, (Scope(root), e, cd))])
def test_multiply_fractions(self):
(a, b), (c, d) = ab, cd = root = tree('a / b * (c / d)')
self.assertEqual(multiply_fractions(root, (Scope(root), ab, cd)),
a * c / (b * d))
(ab, e), cd = root = tree('a / b * e * (c / d)')
self.assertEqual(multiply_fractions(root, (Scope(root), ab, cd)),
a * c / (b * d) * e)
def test_match_divide_fractions(self):
(a, b), c = root = tree('a / b / c')
self.assertEqualPos(match_divide_fractions(root),
[P(root, divide_fraction, (a, b, c))])
root = tree('a / (b / c)')
self.assertEqualPos(match_divide_fractions(root),
[P(root, divide_by_fraction, (a, b, c))])
def test_divide_fraction(self):
(a, b), c = root = tree('a / b / c')
self.assertEqual(divide_fraction(root, (a, b, c)), a / (b * c))
def test_divide_by_fraction(self):
a, (b, c) = root = tree('a / (b / c)')
self.assertEqual(divide_by_fraction(root, (a, b, c)), a * c / b)
def test_match_equal_fraction_parts(self):
(a, b), (c, a) = root = tree('ab / (ca)')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, divide_fraction_parts, (a, [a, b], [c, a], 0, 1))])
(a, b), a = root = tree('ab / a')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, divide_fraction_parts, (a, [a, b], [a], 0, 0))])
a, (a, b) = root = tree('a / (ab)')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, divide_fraction_parts, (a, [a], [a, b], 0, 0))])
root = tree('abc / (cba)')
((a, b), c) = root[0]
s0, s1 = [a, b, c], [c, b, a]
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, divide_fraction_parts, (a, s0, s1, 0, 2)),
P(root, divide_fraction_parts, (b, s0, s1, 1, 1)),
P(root, divide_fraction_parts, (c, s0, s1, 2, 0))])
root = tree('-a / a')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, divide_fraction_parts, (a, [-a], [a], 0, 0))])
(ap, b), aq = root = tree('a ^ p * b / a ^ q')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, extract_divided_roots, (a, [ap, b], [aq], 0, 0))])
(a, b), aq = root = tree('a * b / a ^ q')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, extract_divided_roots, (a, [a, b], [aq], 0, 0))])
(ap, b), a = root = tree('a ^ p * b / a')
self.assertEqualPos(match_equal_fraction_parts(root),
[P(root, extract_divided_roots, (a, [ap, b], [a], 0, 0))])
def test_divide_fraction_parts(self):
(a, b), (c, a) = root = tree('ab / (ca)')
result = divide_fraction_parts(root, (a, [a, b], [c, a], 0, 1))
self.assertEqual(result, b / c)
(a, b), a = root = tree('ab / a')
result = divide_fraction_parts(root, (a, [a, b], [a], 0, 0))
self.assertEqual(result, b / 1)
root, l1 = tree('a / (ab), 1')
a, (a, b) = root
result = divide_fraction_parts(root, (a, [a], [a, b], 0, 0))
self.assertEqual(result, l1 / b)
root = tree('abc / (cba)')
((a, b), c) = root[0]
result = divide_fraction_parts(root, (a, [a, b, c], [c, b, a], 0, 2))
self.assertEqual(result, b * c / (c * b))
result = divide_fraction_parts(root, (b, [a, b, c], [c, b, a], 1, 1))
self.assertEqual(result, a * c / (c * a))
result = divide_fraction_parts(root, (c, [a, b, c], [c, b, a], 2, 0))
self.assertEqual(result, a * b / (b * a))
(a, b), a = root = tree('-ab / a')
result = divide_fraction_parts(root, (a, [-a, b], [a], 0, 0))
self.assertEqual(result, -b / 1)
def test_extract_divided_roots(self):
r, a = tree('a ^ p * b / a ^ q, a')
((a, p), b), (a, q) = (ap, b), aq = r
self.assertEqual(extract_divided_roots(r, (a, [ap, b], [aq], 0, 0)),
a ** p / a ** q * b / 1)
r = tree('a * b / a ^ q, a')
self.assertEqual(extract_divided_roots(r, (a, [a, b], [aq], 0, 0)),
a / a ** q * b / 1)
r = tree('a ^ p * b / a, a')
self.assertEqual(extract_divided_roots(r, (a, [ap, b], [a], 0, 0)),
a ** p / a * b / 1)
# vim: set fileencoding=utf-8 :
from src.rules.goniometry import sin, cos, tan, match_add_quadrants, \
add_quadrants, match_negated_parameter, negated_sinus_parameter, \
negated_cosinus_parameter, match_standard_radian, standard_radian, \
is_pi_frac
from src.node import PI, OP_SIN, OP_COS, OP_TAN
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
from src.rules import goniometry
import doctest
class TestRulesGoniometry(RulesTestCase):
def test_doctest(self):
self.assertEqual(doctest.testmod(m=goniometry)[0], 0)
def test_match_add_quadrants(self):
root = tree('sin t ^ 2 + cos t ^ 2')
possibilities = match_add_quadrants(root)
self.assertEqualPos(possibilities, [P(root, add_quadrants, ())])
def test_add_quadrants(self):
self.assertEqual(add_quadrants(None, ()), 1)
def test_match_negated_parameter(self):
s, c = tree('sin -t, cos -t')
t = s[0]
self.assertEqualPos(match_negated_parameter(s), \
[P(s, negated_sinus_parameter, (t,))])
self.assertEqualPos(match_negated_parameter(c), \
[P(c, negated_cosinus_parameter, (t,))])
def test_negated_sinus_parameter(self):
s = tree('sin -t')
t = s[0]
self.assertEqual(negated_sinus_parameter(s, (t,)), -sin(+t))
def test_negated_cosinus_parameter(self):
c = tree('cos -t')
t = c[0]
self.assertEqual(negated_cosinus_parameter(c, (t,)), cos(+t))
def test_is_pi_frac(self):
l1, pi = tree('1,' + PI)
self.assertTrue(is_pi_frac(l1 / 2 * pi, 2))
self.assertFalse(is_pi_frac(l1 / 2 * pi, 3))
self.assertFalse(is_pi_frac(l1 * pi, 3))
def test_match_standard_radian(self):
s, c, t = tree('sin(1 / 6 * pi), cos(1 / 2 * pi), tan(0)')
self.assertEqualPos(match_standard_radian(s), \
[P(s, standard_radian, (OP_SIN, 1))])
self.assertEqualPos(match_standard_radian(c), \
[P(c, standard_radian, (OP_COS, 4))])
self.assertEqualPos(match_standard_radian(t), \
[P(t, standard_radian, (OP_TAN, 0))])
def test_standard_radian(self):
l0, l1, sq3, pi6, pi4, pi2 = tree('0,1,sqrt(3),1/6*pi,1/4*pi,1/2*pi')
self.assertEqual(standard_radian(sin(pi6), (OP_SIN, 1)), l1 / 2)
self.assertEqual(standard_radian(sin(pi2), (OP_SIN, 4)), 1)
self.assertEqual(standard_radian(cos(l0), (OP_COS, 0)), 1)
self.assertEqual(standard_radian(tan(pi4), (OP_TAN, 3)), sq3)
from src.rules.groups import match_combine_groups, combine_groups
from src.node import Scope
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
......@@ -6,64 +7,88 @@ from tests.rulestestcase import RulesTestCase, tree
class TestRulesGroups(RulesTestCase):
def test_match_combine_groups_no_const(self):
a0, a1 = root = tree('a + a')
root, l1 = tree('a + a,1')
a0, a1 = root
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (Scope(root), l1, a0, a0,
l1, a1, a1))])
def test_match_combine_groups_negation(self):
root, l1 = tree('-a + a,1')
a0, a1 = root
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (1, a0, a0, 1, a1, a1))])
[P(root, combine_groups, (Scope(root), -l1, +a0, a0,
l1, a1, a1))])
def test_match_combine_groups_single_const(self):
a0, mul = root = tree('a + 2a')
root, l1 = tree('a + 2a,1')
a0, mul = root
l2, a1 = mul
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (1, a0, a0, l2, a1, mul))])
[P(root, combine_groups, (Scope(root), l1, a0, a0,
l2, a1, mul))])
def test_match_combine_groups_two_const(self):
((l2, a0), b), (l3, a1) = (m0, b), m1 = root = tree('2a + b + 3a')
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (l2, a0, m0, l3, a1, m1))])
[P(root, combine_groups, (Scope(root), l2, a0, m0,
l3, a1, m1))])
def test_match_combine_groups_n_const(self):
((l2, a0), (l3, a1)), (l4, a2) = (m0, m1), m2 = root = tree('2a+3a+4a')
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (l2, a0, m0, l3, a1, m1)),
P(root, combine_groups, (l2, a0, m0, l4, a2, m2)),
P(root, combine_groups, (l3, a1, m1, l4, a2, m2))])
[P(root, combine_groups, (Scope(root), l2, a0, m0,
l3, a1, m1)),
P(root, combine_groups, (Scope(root), l2, a0, m0,
l4, a2, m2)),
P(root, combine_groups, (Scope(root), l3, a1, m1,
l4, a2, m2))])
def test_match_combine_groups_identifier_group_no_const(self):
ab0, ab1 = root = tree('ab + ab')
root, l1 = tree('ab + ab,1')
ab0, ab1 = root
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (1, ab0, ab0, 1, ab1, ab1))])
[P(root, combine_groups, (Scope(root), l1, ab0, ab0,
l1, ab1, ab1))])
def test_match_combine_groups_identifier_group_single_const(self):
m0, m1 = root = tree('ab + 2ab')
root, l1 = tree('ab + 2ab,1')
m0, m1 = root
(l2, a), b = m1
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (1, m0, m0, l2, a * b, m1))])
[P(root, combine_groups, (Scope(root), l1, m0, m0,
l2, a * b, m1))])
def test_match_combine_groups_identifier_group_unordered(self):
m0, m1 = root = tree('ab + ba')
root, l1 = tree('ab + ba,1')
m0, m1 = root
b, a = m1
possibilities = match_combine_groups(root)
self.assertEqualPos(possibilities,
[P(root, combine_groups, (1, m0, m0, 1, b * a, m1))])
[P(root, combine_groups, (Scope(root), l1, m0, m0,
l1, b * a, m1))])
def test_combine_groups_simple(self):
root, l1 = tree('a + a,1')
a0, a1 = root
self.assertEqualNodes(combine_groups(root, (1, a0, a0, 1, a1, a1)),
self.assertEqualNodes(combine_groups(root,
(Scope(root), l1, a0, a0, l1, a1, a1)),
(l1 + 1) * a0)
def test_combine_groups_nary(self):
......@@ -71,5 +96,6 @@ class TestRulesGroups(RulesTestCase):
abb, ba = root
ab, b = abb
self.assertEqualNodes(combine_groups(root, (1, ab, ab, 1, ba, ba)),
self.assertEqualNodes(combine_groups(root,
(Scope(root), l1, ab, ab, l1, ba, ba)),
(l1 + 1) * ab + b)
from src.rules.negation import match_negated_division, \
single_negated_division, double_negated_division
from src.rules.negation import match_negated_factor, negated_factor, \
match_negate_polynome, negate_polynome, double_negation, \
match_negated_division, single_negated_division, \
double_negated_division
from src.node import Scope
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
class TestRulesNegation(RulesTestCase):
def test_match_negated_factor(self):
a, b = root = tree('a * -b')
self.assertEqualPos(match_negated_factor(root),
[P(root, negated_factor, (Scope(root), b))])
(a, b), c = root = tree('a * -b * -c')
scope = Scope(root)
self.assertEqualPos(match_negated_factor(root),
[P(root, negated_factor, (scope, b)),
P(root, negated_factor, (scope, c))])
def test_negated_factor(self):
a, b = root = tree('a * -b')
self.assertEqualNodes(negated_factor(root, (Scope(root), b)),
-a * +b)
(a, b), c = root = tree('a * -b * -c')
self.assertEqualNodes(negated_factor(root, (Scope(root), b)),
-a * +b * c)
self.assertEqualNodes(negated_factor(root, (Scope(root), c)),
-a * b * +c)
def test_match_negate_polynome(self):
root = tree('--a')
self.assertEqualPos(match_negate_polynome(root),
[P(root, double_negation, ())])
root = tree('-(a + b)')
self.assertEqualPos(match_negate_polynome(root),
[P(root, negate_polynome, ())])
def test_double_negation(self):
root = tree('--a')
self.assertEqualNodes(double_negation(root, ()), ++root)
def test_negate_polynome(self):
a, b = root = tree('-(a + b)')
self.assertEqualNodes(negate_polynome(root, ()), -a + -b)
a, b = root = tree('-(a - b)')
self.assertEqualNodes(negate_polynome(root, ()), -a + -b)
def test_match_negated_division_none(self):
self.assertEqual(match_negated_division(tree('1 / 2')), [])
def test_match_negated_division_single(self):
l1, l2 = root = tree('-1 / 2')
possibilities = match_negated_division(root)
self.assertEqualPos(possibilities,
[P(root, single_negated_division, (l1[0], l2))])
self.assertEqualPos(match_negated_division(root), [])
l1, l2 = root = tree('1 / -2')
possibilities = match_negated_division(root)
self.assertEqualPos(possibilities,
[P(root, single_negated_division, (l1, l2[0]))])
[P(root, single_negated_division, (l1, +l2))])
def test_match_negated_division_double(self):
root = tree('-1 / -2')
possibilities = match_negated_division(root)
self.assertEqualPos(possibilities,
[P(root, double_negated_division, (root,))])
[P(root, double_negated_division, ())])
def test_single_negated_division(self):
l1, l2 = root = tree('-1 / 2')
self.assertEqualNodes(single_negated_division(root, (l1[0], l2)),
-(l1[0] / l2))
l1, l2 = root = tree('1 / -2')
self.assertEqualNodes(single_negated_division(root, (l1, l2[0])),
-(l1 / l2[0]))
self.assertEqualNodes(single_negated_division(root, (l1, +l2)),
-l1 / +l2)
def test_double_negated_division(self):
l1, l2 = root = tree('-1 / -2')
self.assertEqualNodes(double_negated_division(root, (root,)),
l1[0] / l2[0])
self.assertEqualNodes(double_negated_division(root, ()),
+l1 / +l2)
from src.rules.numerics import add_numerics, match_divide_numerics, \
divide_numerics, match_multiply_numerics, multiply_numerics
from src.rules.numerics import match_add_numerics, add_numerics, \
match_divide_numerics, divide_numerics, reduce_fraction_constants, \
fraction_to_int_fraction, match_multiply_numerics, multiply_numerics, \
raise_numerics
from src.node import ExpressionLeaf as L, Scope
from src.possibilities import Possibility as P
from src.node import ExpressionLeaf as L
from tests.rulestestcase import RulesTestCase, tree
class TestRulesNumerics(RulesTestCase):
def test_match_add_numerics(self):
l1, l2 = root = tree('1 + 2')
possibilities = match_add_numerics(root)
self.assertEqualPos(possibilities,
[P(root, add_numerics, (Scope(root), l1, l2))])
(l1, b), l2 = root = tree('1 + b + 2')
possibilities = match_add_numerics(root)
self.assertEqualPos(possibilities,
[P(root, add_numerics, (Scope(root), l1, l2))])
def test_add_numerics(self):
l0, a, l1 = tree('1,a,2')
self.assertEqual(add_numerics(l0 + l1, (l0, l1, L(1), L(2))), 3)
self.assertEqual(add_numerics(l0 + a + l1, (l0, l1, L(1), L(2))),
L(3) + a)
root = l0 + l1
self.assertEqual(add_numerics(root, (Scope(root), l0, l1)), 3)
root = l0 + a + l1
self.assertEqual(add_numerics(root, (Scope(root), l0, l1)), L(3) + a)
def test_add_numerics_negations(self):
l0, a, l1 = tree('1,a,2')
l1, a, l2 = tree('1,a,2')
ml1, ml2 = -l1, -l2
self.assertEqual(add_numerics(-l0 + l1, (-l0, l1, -L(1), L(2))), 1)
self.assertEqual(add_numerics(l0 + -l1, (l0, -l1, L(1), -L(2))), -1)
self.assertEqual(add_numerics(l0 + a + -l1, (l0, -l1, L(1), -L(2))),
L(-1) + a)
r = ml1 + l2
self.assertEqual(add_numerics(r, (Scope(r), ml1, l2)), 1)
r = l1 + ml2
self.assertEqual(add_numerics(r, (Scope(r), l1, ml2)), -1)
def test_match_divide_numerics(self):
a, b, i2, i3, i6, f1, f2, f3 = tree('a,b,2,3,6,1.0,2.0,3.0')
a, b, i2, i3, i4, i6, f1, f2, f3 = tree('a,b,2,3,4,6,1.0,2.0,3.0')
root = i6 / i2
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, divide_numerics, (6, 2))])
[P(root, divide_numerics, (6, 2, 0))])
root = -i6 / i2
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, divide_numerics, (6, 2, 1))])
root = i3 / i2
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities, [])
self.assertEqualPos(possibilities,
[P(root, fraction_to_int_fraction, (1, 1, 2))])
root = i2 / i4
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, reduce_fraction_constants, (2,))])
root = f3 / i2
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, divide_numerics, (3.0, 2))])
[P(root, divide_numerics, (3.0, 2, 0))])
root = i3 / f2
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, divide_numerics, (3, 2.0))])
[P(root, divide_numerics, (3, 2.0, 0))])
root = f3 / f2
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, divide_numerics, (3.0, 2.0))])
[P(root, divide_numerics, (3.0, 2.0, 0))])
root = i3 / f1
possibilities = match_divide_numerics(root)
self.assertEqualPos(possibilities,
[P(root, divide_numerics, (3, 1))])
[P(root, divide_numerics, (3, 1, 0))])
root = a / b
possibilities = match_divide_numerics(root)
......@@ -61,55 +87,81 @@ class TestRulesNumerics(RulesTestCase):
def test_divide_numerics(self):
i2, i3, i6, f2, f3 = tree('2,3,6,2.0,3.0')
self.assertEqual(divide_numerics(i6 / i2, (6, 2)), 3)
self.assertEqual(divide_numerics(f3 / i2, (3.0, 2)), 1.5)
self.assertEqual(divide_numerics(i3 / f2, (3, 2.0)), 1.5)
self.assertEqual(divide_numerics(f3 / f2, (3.0, 2.0)), 1.5)
self.assertEqual(divide_numerics(i6 / i2, (6, 2, 0)), 3)
self.assertEqual(divide_numerics(f3 / i2, (3.0, 2, 0)), 1.5)
self.assertEqual(divide_numerics(i3 / f2, (3, 2.0, 0)), 1.5)
self.assertEqual(divide_numerics(f3 / f2, (3.0, 2.0, 0)), 1.5)
self.assertEqual(divide_numerics(i6 / i2, (6, 2, 1)), -3)
self.assertEqual(divide_numerics(i6 / i2, (6, 2, 2)), --i3)
def test_reduce_fraction_constants(self):
l1, l2 = tree('1,2')
self.assertEqual(reduce_fraction_constants(l2 / 4, (2,)), l1 / l2)
def test_fraction_to_int_fraction(self):
l1, l4 = tree('1,4')
self.assertEqual(fraction_to_int_fraction(l4 / 3, (1, 1, 3)),
l1 + l1 / 3)
def test_match_multiply_numerics(self):
i2, i3, i6, f2, f3, f6 = tree('2,3,6,2.0,3.0,6.0')
root = i3 * i2
self.assertEqual(match_multiply_numerics(root),
[P(root, multiply_numerics, (i3, i2, 3, 2))])
[P(root, multiply_numerics, (Scope(root), i3, i2))])
root = f3 * i2
self.assertEqual(match_multiply_numerics(root),
[P(root, multiply_numerics, (f3, i2, 3.0, 2))])
[P(root, multiply_numerics, (Scope(root), f3, i2))])
root = i3 * f2
self.assertEqual(match_multiply_numerics(root),
[P(root, multiply_numerics, (i3, f2, 3, 2.0))])
[P(root, multiply_numerics, (Scope(root), i3, f2))])
root = f3 * f2
self.assertEqual(match_multiply_numerics(root),
[P(root, multiply_numerics, (f3, f2, 3.0, 2.0))])
[P(root, multiply_numerics, (Scope(root), f3, f2))])
def test_multiply_numerics(self):
a, b, i2, i3, i6, f2, f3, f6 = tree('a,b,2,3,6,2.0,3.0,6.0')
self.assertEqual(multiply_numerics(i3 * i2, (i3, i2, 3, 2)), 6)
self.assertEqual(multiply_numerics(f3 * i2, (f3, i2, 3.0, 2)), 6.0)
self.assertEqual(multiply_numerics(i3 * f2, (i3, f2, 3, 2.0)), 6.0)
self.assertEqual(multiply_numerics(f3 * f2, (f3, f2, 3.0, 2.0)), 6.0)
root = i3 * i2
self.assertEqual(multiply_numerics(root, (Scope(root), i3, i2)), 6)
root = f3 * i2
self.assertEqual(multiply_numerics(root, (Scope(root), f3, i2)), 6.0)
root = i3 * f2
self.assertEqual(multiply_numerics(root, (Scope(root), i3, f2)), 6.0)
root = f3 * f2
self.assertEqual(multiply_numerics(root, (Scope(root), f3, f2)), 6.0)
self.assertEqualNodes(multiply_numerics(a * i3 * i2 * b, (i3, i2, 3, 2)),
a * 6 * b)
root = a * i3 * i2 * b
self.assertEqualNodes(multiply_numerics(root,
(Scope(root), i3, i2)), a * 6 * b)
def test_multiply_numerics_negation(self):
l1_neg, l2 = root = tree('-1 * 2')
self.assertEqualNodes(multiply_numerics(root, (l1_neg, l2, -1, 2)), -l2)
root, l6 = tree('1 - 2 * 3,6')
l1, neg = root
l2, l3 = mul = neg[0]
self.assertEqualNodes(multiply_numerics(mul, (l2, l3, 2, 3)), l6)
self.assertEqualNodes(multiply_numerics(root, (Scope(root), l1_neg,
l2)), -l2)
l1, mul = root = tree('1 + -2 * 3')
root, l6 = tree('1 + -2 * 3,6')
l1, mul = root
l2_neg, l3 = mul
self.assertEqualNodes(multiply_numerics(mul, (l2_neg, l3, -2, 3)), -l6)
self.assertEqualNodes(multiply_numerics(mul, (Scope(mul),
l2_neg, l3)), -l6)
root, l30 = tree('-5 * x ^ 2 - -15x - 5 * 6,30')
rest, mul_neg = root
l5_neg, l6 = mul = mul_neg[0]
self.assertEqualNodes(multiply_numerics(mul, (l5_neg, l6, 5, 6)), l30)
rest, mul = root
l5_neg, l6 = mul
self.assertEqualNodes(multiply_numerics(mul, (Scope(mul),
l5_neg, l6)), -l30)
def test_raise_numerics(self):
l1, l2 = root = tree('2 ^ 3')
self.assertEqualNodes(raise_numerics(root, (l1, l2)), L(8))
l1_neg, l2 = root = tree('(-2) ^ 2')
self.assertEqualNodes(raise_numerics(root, (l1_neg, l2)), --L(4))
l1_neg, l2 = root = tree('(-2) ^ 3')
self.assertEqualNodes(raise_numerics(root, (l1_neg, l2)), ---L(8))
from src.rules.poly import match_combine_polynomes, combine_polynomes
from src.rules.numerics import add_numerics
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
class TestRulesPoly(RulesTestCase):
def test_identifiers_basic(self):
a1, a2 = root = tree('a+a')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (a1, a2, 1, 1, 'a', 1))])
def test_identifiers_normal(self):
a1, a2 = root = tree('a+2a')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (a1, a2, 1, 2, 'a', 1))])
def test_identifiers_reverse(self):
a1, a2 = root = tree('a+a*2')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (a1, a2, 1, 2, a1, 1))])
def test_identifiers_exponent(self):
a1, a2 = root = tree('a2+a2')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (a1, a2, 1, 1, 'a', 2))])
def test_identifiers_coeff_exponent_left(self):
a1, a2 = root = tree('2a3+a3')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (a1, a2, 2, 1, 'a', 3))])
def test_identifiers_coeff_exponent_both(self):
a1, a2 = root = tree('2a3+2a3')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (a1, a2, 2, 2, 'a', 3))])
def test_basic_subexpressions(self):
a_b, c, d = tree('a+b,c,d')
left, right = root = tree('(a+b)^d + (a+b)^d')
self.assertEqual(left, right)
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (left, right, 1, 1, a_b, d))])
left, right = root = tree('5(a+b)^d + 7(a+b)^d')
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, combine_polynomes, (left, right, 5, 7, a_b, d))])
# TODO: Move to other strategy
#left, right = root = tree('c(a+b)^d + c(a+b)^d')
#self.assertEqual(left, right)
#possibilities = match_combine_polynomes(root)
#self.assertEqualPos(possibilities,
# [P(root, combine_polynomes, (left, right, c, c, a_b, d))])
def test_match_add_numerics(self):
l0, l1, l2 = tree('0,1,2')
root = l0 + l1 + l2
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, add_numerics, (l0, l1, l0, l1)),
P(root, add_numerics, (l0, l2, l0, l2)),
P(root, add_numerics, (l1, l2, l1, l2))])
def test_match_add_numerics_explicit_powers(self):
l0, l1, l2 = tree('0^1,1*1,1*2^1')
root = l0 + l1 + l2
possibilities = match_combine_polynomes(root)
self.assertEqualPos(possibilities,
[P(root, add_numerics, (l0, l1, l0[0], l1[1])),
P(root, add_numerics, (l0, l2, l0[0], l2[1][0])),
P(root, add_numerics, (l1, l2, l1[1], l2[1][0]))])
def test_combine_polynomes(self):
# 2a + 3a -> (2 + 3) * a
l0, a, l1, l2 = tree('2,a,3,1')
root = l0 * a + l1 * a
left, right = root
replacement = combine_polynomes(root, (left, right, l0, l1, a, 1))
self.assertEqualNodes(replacement, (l0 + l1) * a)
# a + 3a -> (1 + 3) * a
root = a + l1 * a
left, right = root
replacement = combine_polynomes(root, (left, right, l2, l1, a, 1))
self.assertEqualNodes(replacement, (l2 + l1) * a)
# 2a + a -> (2 + 1) * a
root = l0 * a + a
left, right = root
replacement = combine_polynomes(root, (left, right, l0, l2, a, 1))
self.assertEqualNodes(replacement, (l0 + 1) * a)
# a + a -> (1 + 1) * a
root = a + a
left, right = root
replacement = combine_polynomes(root, (left, right, l2, l2, a, 1))
self.assertEqualNodes(replacement, (l2 + 1) * a)
......@@ -2,10 +2,12 @@ from src.rules.powers import match_add_exponents, add_exponents, \
match_subtract_exponents, subtract_exponents, \
match_multiply_exponents, multiply_exponents, \
match_duplicate_exponent, duplicate_exponent, \
match_raised_fraction, raised_fraction, \
match_remove_negative_exponent, remove_negative_exponent, \
match_exponent_to_root, exponent_to_root
match_exponent_to_root, exponent_to_root, \
match_constant_exponent, remove_power_of_zero, remove_power_of_one
from src.node import Scope, ExpressionNode as N
from src.possibilities import Possibility as P
from src.node import ExpressionNode as N
from tests.rulestestcase import RulesTestCase, tree
......@@ -17,7 +19,7 @@ class TestRulesPowers(RulesTestCase):
possibilities = match_add_exponents(root)
self.assertEqualPos(possibilities,
[P(root, add_exponents, (n0, n1, a, p, q))])
[P(root, add_exponents, (Scope(root), n0, n1, a, p, q))])
def test_match_add_exponents_ternary(self):
a, p, q, r = tree('a,p,q,r')
......@@ -25,9 +27,9 @@ class TestRulesPowers(RulesTestCase):
possibilities = match_add_exponents(root)
self.assertEqualPos(possibilities,
[P(root, add_exponents, (n0, n1, a, p, q)),
P(root, add_exponents, (n0, n2, a, p, r)),
P(root, add_exponents, (n1, n2, a, q, r))])
[P(root, add_exponents, (Scope(root), n0, n1, a, p, q)),
P(root, add_exponents, (Scope(root), n0, n2, a, p, r)),
P(root, add_exponents, (Scope(root), n1, n2, a, q, r))])
def test_match_add_exponents_multiple_identifiers(self):
a, b, p, q = tree('a,b,p,q')
......@@ -35,8 +37,24 @@ class TestRulesPowers(RulesTestCase):
possibilities = match_add_exponents(root)
self.assertEqualPos(possibilities,
[P(root, add_exponents, (a0, a1, a, p, q)),
P(root, add_exponents, (b0, b1, b, p, q))])
[P(root, add_exponents, (Scope(root), a0, a1, a, p, q)),
P(root, add_exponents, (Scope(root), b0, b1, b, p, q))])
def test_match_add_exponents_nary_multiplication(self):
a, p, q = tree('a,p,q')
(n0, l1), n1 = root = a ** p * 2 * a ** q
possibilities = match_add_exponents(root)
self.assertEqualPos(possibilities,
[P(root, add_exponents, (Scope(root), n0, n1, a, p, q))])
def test_match_add_exponents_negated(self):
a, q = tree('a,q')
n0, n1 = root = (-a) * a ** q
possibilities = match_add_exponents(root)
self.assertEqualPos(possibilities,
[P(root, add_exponents, (Scope(root), n0, n1, a, 1, q))])
def test_match_subtract_exponents_powers(self):
a, p, q = tree('a,p,q')
......@@ -78,13 +96,25 @@ class TestRulesPowers(RulesTestCase):
self.assertEqualPos(possibilities,
[P(root, duplicate_exponent, ([a, b], p))])
def test_match_raised_fraction(self):
ab, p = root = tree('(a / b) ^ p')
self.assertEqualPos(match_raised_fraction(root),
[P(root, raised_fraction, (ab, p))])
def test_raised_fraction(self):
ab, p = root = tree('(a / b) ^ p')
a, b = ab
self.assertEqual(raised_fraction(root, (ab, p)), a ** p / b ** p)
def test_match_remove_negative_exponent(self):
a, p = tree('a,p')
root = a ** -p
possibilities = match_remove_negative_exponent(root)
self.assertEqualPos(possibilities,
[P(root, remove_negative_exponent, (a, p))])
[P(root, remove_negative_exponent, (a, -p))])
def test_match_exponent_to_root(self):
a, n, m, l1 = tree('a,n,m,1')
......@@ -103,7 +133,8 @@ class TestRulesPowers(RulesTestCase):
a, p, q = tree('a,p,q')
n0, n1 = root = a ** p * a ** q
self.assertEqualNodes(add_exponents(root, (n0, n1, a, p, q)), a ** (p + q))
self.assertEqualNodes(add_exponents(root,
(Scope(root), n0, n1, a, p, q)), a ** (p + q))
def test_subtract_exponents(self):
a, p, q = tree('a,p,q')
......@@ -131,11 +162,11 @@ class TestRulesPowers(RulesTestCase):
a ** p * b ** p * c ** p)
def test_remove_negative_exponent(self):
a, p, l1 = tree('a,p,1')
root = a ** -p
a, p, l1 = tree('a,-p,1')
root = a ** p
self.assertEqualNodes(remove_negative_exponent(root, (a, p)),
l1 / a ** p)
l1 / a ** +p)
def test_exponent_to_root(self):
a, n, m, l1 = tree('a,n,m,1')
......@@ -146,3 +177,21 @@ class TestRulesPowers(RulesTestCase):
self.assertEqualNodes(exponent_to_root(root, (a, l1, m)),
N('sqrt', a, m))
def test_match_constant_exponent(self):
a0, a1, a2 = tree('a0,a1,a2')
self.assertEqualPos(match_constant_exponent(a0),
[P(a0, remove_power_of_zero, ())])
self.assertEqualPos(match_constant_exponent(a1),
[P(a1, remove_power_of_one, ())])
self.assertEqualPos(match_constant_exponent(a2), [])
def test_remove_power_of_zero(self):
self.assertEqual(remove_power_of_zero(tree('a0'), ()), 1)
def test_remove_power_of_one(self):
a1 = tree('a1')
self.assertEqual(remove_power_of_one(a1, ()), a1[0])
from src.rules.sort import match_sort_multiplicants, move_constant
from src.node import Scope
from src.possibilities import Possibility as P
from tests.rulestestcase import RulesTestCase, tree
class TestRulesSort(RulesTestCase):
def test_match_sort_multiplicants(self):
x, l2 = root = tree('x * 2')
possibilities = match_sort_multiplicants(root)
self.assertEqualPos(possibilities,
[P(root, move_constant, (Scope(root), l2, x))])
def test_move_constant(self):
x, l2 = root = tree('x * 2')
self.assertEqualNodes(move_constant(root, (Scope(root), l2, x)),
l2 * x)
import unittest
from src.rules.utils import least_common_multiple
from src.rules.utils import least_common_multiple, is_fraction, partition
from tests.rulestestcase import tree
class TestRulesUtils(unittest.TestCase):
......@@ -9,3 +10,15 @@ class TestRulesUtils(unittest.TestCase):
self.assertEqual(least_common_multiple(5, 6), 30)
self.assertEqual(least_common_multiple(5, 6, 15), 30)
self.assertEqual(least_common_multiple(2, 4), 4)
def test_is_fraction(self):
l1, a = tree('1, a')
self.assertTrue(is_fraction(a / 2, a, 2))
self.assertTrue(is_fraction(l1 / 2 * a, a, 2))
self.assertTrue(is_fraction(a * (l1 / 2), a, 2))
self.assertFalse(is_fraction(l1 / 3 * a, a, 2))
def test_partition(self):
self.assertEqual(partition(lambda x: x & 1, range(6)),
([1, 3, 5], [0, 2, 4]))
from unittest import TestCase
from src.validation import validate
class TestValidation(TestCase):
def test_simple_success(self):
self.assertTrue(validate('3a+a', '4a'))
def test_simple_failure(self):
self.assertFalse(validate('3a+a', '4a+1'))
def test_intermediate_success(self):
self.assertTrue(validate('3a+a+b+2b', '4a+3b'))
self.assertTrue(validate('a/b/(c/d)', 'ad/(bc)'))
def test_intermediate_failure(self):
self.assertFalse(validate('3a+a+b+2b', '4a+4b'))
#def test_advanced_failure(self):
# self.assertFalse(validate('(x-1)^3+(x-1)^3', '4a+4b'))
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment