Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
T
trs
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
trs
Commits
1659cc67
Commit
1659cc67
authored
Feb 28, 2012
by
Taddeus Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Added some more fraction rewrite rules.
parent
f46cf729
Changes
2
Show whitespace changes
Inline
Side-by-side
Showing
2 changed files
with
77 additions
and
21 deletions
+77
-21
src/rules/fractions.py
src/rules/fractions.py
+49
-20
tests/test_rules_fractions.py
tests/test_rules_fractions.py
+28
-1
No files found.
src/rules/fractions.py
View file @
1659cc67
...
...
@@ -2,7 +2,7 @@ from itertools import combinations, product
from
.utils
import
least_common_multiple
,
partition
from
..node
import
ExpressionLeaf
as
L
,
Scope
,
negate
,
OP_DIV
,
OP_ADD
,
\
OP_MUL
,
nary_node
,
negate
OP_MUL
,
OP_POW
,
nary_node
,
negate
from
..possibilities
import
Possibility
as
P
,
MESSAGES
from
..translate
import
_
...
...
@@ -235,6 +235,12 @@ def match_equal_fraction_parts(node):
ab / (ac) -> b / c
ab / a -> b / 1
a / (ab) -> 1 / b
If the same root appears in both nominator and denominator, extrct it so
that it can be reduced to a single power by power division rules.
a ^ p * b / a ^ q -> a ^ p / a ^ q * b / 1
a ^ p * b / a -> a ^ p / a * b / 1
a * b / a ^ q -> a / a ^ q * b / 1
"""
assert
node
.
is_op
(
OP_DIV
)
...
...
@@ -252,28 +258,29 @@ def match_equal_fraction_parts(node):
p
=
[]
# Look for
in scope
# Look for
matching parts in scopes
for
i
,
n
in
enumerate
(
n_scope
):
for
j
,
d
in
enumerate
(
d_scope
):
if
n
.
equals
(
d
,
ignore_negation
=
True
):
p
.
append
(
P
(
node
,
divide_fraction_parts
,
(
negate
(
n
,
0
),
n_scope
,
d_scope
,
i
,
j
)))
return
p
if
n
.
is_op
(
OP_POW
):
a
=
n
[
0
]
if
d
==
a
or
(
d
.
is_op
(
OP_POW
)
and
d
[
0
]
==
a
):
# a ^ p * b / a -> a ^ p / a * b
p
.
append
(
P
(
node
,
extract_divided_roots
,
(
a
,
n_scope
,
d_scope
,
i
,
j
)))
elif
d
.
is_op
(
OP_POW
)
and
n
==
d
[
0
]:
# a * b / a ^ q -> a / a ^ q * b
p
.
append
(
P
(
node
,
extract_divided_roots
,
(
d
[
0
],
n_scope
,
d_scope
,
i
,
j
)))
def
divide_fraction_parts
(
root
,
args
):
"""
Divide nominator and denominator by the same part.
return
p
Examples:
ab / (ac) -> b / c
ab / a -> b / 1
a / (ab) -> 1 / b
-ab / a -> -b / 1
"""
a
,
n_scope
,
d_scope
,
i
,
j
=
args
n
,
d
=
root
def
remove_from_scopes
(
n_scope
,
d_scope
,
i
,
j
):
a_n
,
a_d
=
n_scope
[
i
],
d_scope
[
j
]
del
n_scope
[
i
]
...
...
@@ -296,17 +303,39 @@ def divide_fraction_parts(root, args):
else
:
denom
=
nary_node
(
'*'
,
d_scope
)
return
a_n
,
a_d
,
nom
,
denom
def
divide_fraction_parts
(
root
,
args
):
"""
Divide nominator and denominator by the same part.
Examples:
ab / (ac) -> b / c
ab / a -> b / 1
a / (ab) -> 1 / b
-ab / a -> -b / 1
"""
a
,
n_scope
,
d_scope
,
i
,
j
=
args
n
,
d
=
root
a_n
,
a_d
,
nom
,
denom
=
remove_from_scopes
(
n_scope
,
d_scope
,
i
,
j
)
# Move negation of removed part to nominator and denominator
return
nom
.
negate
(
n
.
negated
+
a_n
.
negated
)
\
/
denom
.
negate
(
d
.
negated
+
a_d
.
negated
)
MESSAGES
[
divide_fraction_parts
]
=
\
_
(
'Divide nominator and denominator in {0} by {1}'
)
_
(
'Divide nominator and denominator in {0} by {1}
.
'
)
def
match_multiplied_power_division
(
node
):
"""
a ^ p * b / a ^ q -> a ^ p / a ^ q * b
"""
assert
node
.
is_op
(
OP_DIV
)
def
extract_divided_roots
(
root
,
args
):
a
,
n_scope
,
d_scope
,
i
,
j
=
args
n
,
d
=
root
ap
,
aq
,
nom
,
denom
=
remove_from_scopes
(
n_scope
,
d_scope
,
i
,
j
)
return
ap
/
aq
*
nom
.
negate
(
n
.
negated
)
/
denom
.
negate
(
d
.
negated
)
MESSAGES
[
extract_divided_roots
]
=
\
_
(
'Extrct the root {1} from nominator and denominator in {0}.'
)
tests/test_rules_fractions.py
View file @
1659cc67
...
...
@@ -2,7 +2,8 @@ from src.rules.fractions import match_constant_division, division_by_one, \
division_of_zero
,
division_by_self
,
match_add_constant_fractions
,
\
equalize_denominators
,
add_nominators
,
match_multiply_fractions
,
\
multiply_fractions
,
multiply_with_fraction
,
\
match_equal_fraction_parts
,
divide_fraction_parts
match_equal_fraction_parts
,
divide_fraction_parts
,
\
extract_divided_roots
from
src.node
import
Scope
from
src.possibilities
import
Possibility
as
P
from
tests.rulestestcase
import
RulesTestCase
,
tree
...
...
@@ -171,6 +172,18 @@ class TestRulesFractions(RulesTestCase):
self
.
assertEqualPos
(
match_equal_fraction_parts
(
root
),
[
P
(
root
,
divide_fraction_parts
,
(
a
,
[
-
a
],
[
a
],
0
,
0
))])
(
ap
,
b
),
aq
=
root
=
tree
(
'a ^ p * b / a ^ q'
)
self
.
assertEqualPos
(
match_equal_fraction_parts
(
root
),
[
P
(
root
,
extract_divided_roots
,
(
a
,
[
ap
,
b
],
[
aq
],
0
,
0
))])
(
a
,
b
),
aq
=
root
=
tree
(
'a * b / a ^ q'
)
self
.
assertEqualPos
(
match_equal_fraction_parts
(
root
),
[
P
(
root
,
extract_divided_roots
,
(
a
,
[
a
,
b
],
[
aq
],
0
,
0
))])
(
ap
,
b
),
a
=
root
=
tree
(
'a ^ p * b / a'
)
self
.
assertEqualPos
(
match_equal_fraction_parts
(
root
),
[
P
(
root
,
extract_divided_roots
,
(
a
,
[
ap
,
b
],
[
a
],
0
,
0
))])
def
test_divide_fraction_parts
(
self
):
(
a
,
b
),
(
c
,
a
)
=
root
=
tree
(
'ab / (ca)'
)
result
=
divide_fraction_parts
(
root
,
(
a
,
[
a
,
b
],
[
c
,
a
],
0
,
1
))
...
...
@@ -197,3 +210,17 @@ class TestRulesFractions(RulesTestCase):
(
a
,
b
),
a
=
root
=
tree
(
'-ab / a'
)
result
=
divide_fraction_parts
(
root
,
(
a
,
[
-
a
,
b
],
[
a
],
0
,
0
))
self
.
assertEqual
(
result
,
-
b
/
1
)
def
test_extract_divided_roots
(
self
):
r
,
a
=
tree
(
'a ^ p * b / a ^ q, a'
)
((
a
,
p
),
b
),
(
a
,
q
)
=
(
ap
,
b
),
aq
=
r
self
.
assertEqual
(
extract_divided_roots
(
r
,
(
a
,
[
ap
,
b
],
[
aq
],
0
,
0
)),
a
**
p
/
a
**
q
*
b
/
1
)
r
=
tree
(
'a * b / a ^ q, a'
)
self
.
assertEqual
(
extract_divided_roots
(
r
,
(
a
,
[
a
,
b
],
[
aq
],
0
,
0
)),
a
/
a
**
q
*
b
/
1
)
r
=
tree
(
'a ^ p * b / a, a'
)
self
.
assertEqual
(
extract_divided_roots
(
r
,
(
a
,
[
ap
,
b
],
[
a
],
0
,
0
)),
a
**
p
/
a
*
b
/
1
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment