| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- \documentclass[a4paper]{article}
- \title{Teaching a computer to learn, find and read licence plates}
- \date{November 17th, 2011}
- \begin{document}
- \maketitle
- \section*{Project members}
- Gijs van der Voort\\Richard Torenvliet\\Jayke Meijer\\Tadde\"us Kroes\\Fabi\'en Tesselaar
- \tableofcontents
- \setcounter{secnumdepth}{1}
- \section{Introduction}
- Licence plates are used all over the world. The plates are, usually, attached to the front and rear
- of a motorised vehicle and used for indentifying this vehicle. Every
- country can have more or less its own version of a licence plate, but all these systems do not
- differ greatly. We will be focusing on the dutch system for licence plates.
- \section{Problem Description}
- License plates are used for indentification and thus made to recognize from great
- distances and still be seen in many weather conditions. Our learning set of photos contains
- ''' ik weet niet precies wat voor camera ''. The angle in which these pictures are taken or the angle
- of the approaching vehicles are always different and some licence plates are a bit dirty,
- but for a human they are still pretty easy to indentify. A computer or perhaps a small
- chipset will need to be thourougly practiced. In short our program must be able to
- do the following:
- \begin{itemize}
- \item Find the location of the license plate.
- \item Use transformations so it gets an upfront view.
- \item Reduce noise where possible.
- \item Get the locations of each letter and extracting it.
- \item Apply a local binary pattern algorithm on each letter.
- \item Matching the found patterns with found results and return the best match.
- \end{itemize}
- \section{Solution}
- Now that we know the problem we can start with stating our solution. This will
- come in a few steps aswell.
- \subsection{Localizing the plate}
- The photos are of very high contrast. Most of the time only the lights of a vehicle
- are visible in addition to the license plate. We can first crop the image untill
- it finds brighter pixel values in a row or column. Then we can apply ''?? weet niet hoor'' local histogram
- matching to find out whether we have a light or license plate.
- \subsection{Transformations}
- Affine transformations will do the trick
- \subsection{Reducing noise}
- Weet niet precies hoe, maar van die kleine rondjes / vlekjes / stipjes moeten
- we wel een beetje weghalen want die maken het wel een beetje lelijk
- \subsection{Extracting a letter}
- De karakteristiek bepalen van het dash/streepje (-) dan heb je in elk geval al
- drie groepen met maar 1 of 2 letters (ws 2). Hier kun je volgens mij dan wel
- makkelijk zoeken op een overgang van letter naar andere letter omdat er stuk
- white-space tussenzit
- \subsection{Local binary patterns}
- Hier moet een vrij groot verhaal omdat dit ons belangrijkste algoritme moet zijn
- + not sure if it will work out :o
- \subsection{Matching the database}
- Als we al die histogrammen opslaan, hoe gaan we dat slim met elkaar vergelijken
- (of naja sneller dan brute force)
- \section{Conclusion}
- This will be fun.
- \end{document}
|