\documentclass[a4paper]{article} \title{Teaching a computer to learn, find and read licence plates} \date{November 17th, 2011} % Paragraph indentation \setlength{\parindent}{0pt} \setlength{\parskip}{1ex plus 0.5ex minus 0.2ex} \begin{document} \maketitle \section*{Project members} Gijs van der Voort\\Richard Torenvliet\\Jayke Meijer\\Tadde\"us Kroes\\Fabi\'en Tesselaar \tableofcontents \setcounter{secnumdepth}{1} \section{Introduction} Licence plates are used all over the world. The plates are, usually, attached to the front and rear of a motorised vehicle and used for identifying this vehicle. Every country can have more or less its own version of a licence plate, but all these systems do not differ greatly. We will be focusing on the Dutch system for licence plates. \section{Problem Description} License plates are used for identification and thus made to recognize from great distances and still be seen in many weather conditions. Our learning set of photos contains '' ik weet niet precies wat voor camera ''. The angle in which these pictures are taken or the angle of the approaching vehicles are always different and some licence plates are a bit dirty, but for a human they are still pretty easy to identify. A computer or perhaps a small chipset will need to be thoroughly practiced. In short our program must be able to do the following: \begin{enumerate} \item Find the location of the license plate. \item Use perspective transformations to obtain an upfront view. \item Reduce noise where possible. \item Find the locations of each letter and extract it. \item Apply a Local Binary Pattern algorithm on each letter. \item Match the found patterns with results from the learning set and return the best match for each letter. \end{enumerate} \section{Solution} Now that we know the problem we can start with stating our solution. This will come in a few steps as well. \subsection{Localizing the plate} The photos are of very high contrast. Most of the time only the lights of a vehicle are visible in addition to the license plate. We can first crop the image until it finds brighter pixel values in a row or column. Then we can apply ''?? weet niet hoor'' local histogram matching to find out whether we have a light or license plate. \subsection{Transformations} Once the locations of the four corner points of the license plate have been found, a simple perspective transformation will be sufficient to transform and resize the plate to a normalized format. \subsection{Reducing noise} Weet niet precies hoe, maar van die kleine rondjes / vlekjes / stipjes moeten we wel een beetje weghalen want die maken het wel een beetje lelijk Taddeus: Ik brainstorm hier een beetje...: Small amounts of noise will probably be suppressed by usage of a Gaussian filter. A real problem occurs in very dirty licence plates, where branches and dirt over a letter could radically change the local binary pattern. A question we can ask ourselves here, is whether we want to concentrate ourselves on these exceptional cases. By law, license plates have to be readable. Therefore, we will first direct our attention at getting a higher score in the 'regular' test set before addressing these cases. \subsection{Extracting a letter} De karakteristiek bepalen van het dash/streepje (-) dan heb je in elk geval al drie groepen met maar 1 of 2 letters (ws 2). Hier kun je volgens mij dan wel makkelijk zoeken op een overgang van letter naar andere letter omdat er stuk white-space tussenzit \subsection{Local binary patterns} Hier moet een vrij groot verhaal omdat dit ons belangrijkste algoritme moet zijn + not sure if it will work out :o \subsection{Matching the database} Als we al die histogrammen opslaan, hoe gaan we dat slim met elkaar vergelijken (of naja sneller dan brute force) \section{Conclusion} This will be fun. \end{document}