|
@@ -5,14 +5,15 @@ from data import exists, DATA_FOLDER
|
|
|
|
|
|
|
|
|
|
|
|
|
def load_classifier(neighbours, blur_scale, c=None, gamma=None, verbose=0):
|
|
def load_classifier(neighbours, blur_scale, c=None, gamma=None, verbose=0):
|
|
|
- classifier_file = DATA_FOLDER + 'classifier_%s_%s.dat' \
|
|
|
|
|
|
|
+ classifier_file = 'classifier_%s_%s.dat' \
|
|
|
% (blur_scale, neighbours)
|
|
% (blur_scale, neighbours)
|
|
|
|
|
+ classifier_path = DATA_FOLDER + classifier_file
|
|
|
|
|
|
|
|
if exists(classifier_file):
|
|
if exists(classifier_file):
|
|
|
if verbose:
|
|
if verbose:
|
|
|
print 'Loading classifier...'
|
|
print 'Loading classifier...'
|
|
|
|
|
|
|
|
- classifier = Classifier(filename=classifier_file, \
|
|
|
|
|
|
|
+ classifier = Classifier(filename=classifier_path, \
|
|
|
neighbours=neighbours, verbose=verbose)
|
|
neighbours=neighbours, verbose=verbose)
|
|
|
elif c != None and gamma != None:
|
|
elif c != None and gamma != None:
|
|
|
if verbose:
|
|
if verbose:
|
|
@@ -23,6 +24,7 @@ def load_classifier(neighbours, blur_scale, c=None, gamma=None, verbose=0):
|
|
|
learning_set = load_learning_set(neighbours, blur_scale, \
|
|
learning_set = load_learning_set(neighbours, blur_scale, \
|
|
|
verbose=verbose)
|
|
verbose=verbose)
|
|
|
classifier.train(learning_set)
|
|
classifier.train(learning_set)
|
|
|
|
|
+ classifier.save(classifier_path)
|
|
|
else:
|
|
else:
|
|
|
raise Exception('No soft margin and gamma specified.')
|
|
raise Exception('No soft margin and gamma specified.')
|
|
|
|
|
|