Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
licenseplates
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
licenseplates
Commits
f957089b
Commit
f957089b
authored
Dec 21, 2011
by
Richard Torenvliet
Browse files
Options
Browse Files
Download
Plain Diff
Merge branch 'master' of github.com:taddeus/licenseplates
parents
728d5238
a6f929bc
Changes
11
Show whitespace changes
Inline
Side-by-side
Showing
11 changed files
with
193 additions
and
118 deletions
+193
-118
.gitignore
.gitignore
+1
-0
src/Classifier.py
src/Classifier.py
+8
-3
src/GaussianFilter.py
src/GaussianFilter.py
+6
-1
src/LocalBinaryPatternizer.py
src/LocalBinaryPatternizer.py
+1
-1
src/find_svm_params.py
src/find_svm_params.py
+1
-1
src/run_classifier.py
src/run_classifier.py
+81
-0
src/test_classifier.py
src/test_classifier.py
+0
-38
src/test_compare.py
src/test_compare.py
+1
-2
src/test_performance.py
src/test_performance.py
+0
-1
src/xml_helper_functions.py
src/xml_helper_functions.py
+91
-71
todo.txt
todo.txt
+3
-0
No files found.
.gitignore
View file @
f957089b
...
@@ -15,3 +15,4 @@ images/BBB
...
@@ -15,3 +15,4 @@ images/BBB
images/Images
images/Images
images/Infos
images/Infos
images/licenseplates
images/licenseplates
images/faulty
src/Classifier.py
View file @
f957089b
...
@@ -3,7 +3,8 @@ from svmutil import svm_train, svm_problem, svm_parameter, svm_predict, \
...
@@ -3,7 +3,8 @@ from svmutil import svm_train, svm_problem, svm_parameter, svm_predict, \
class
Classifier
:
class
Classifier
:
def
__init__
(
self
,
c
=
None
,
gamma
=
None
,
filename
=
None
,
neighbours
=
3
):
def
__init__
(
self
,
c
=
None
,
gamma
=
None
,
filename
=
None
,
neighbours
=
3
,
\
verbose
=
0
):
self
.
neighbours
=
neighbours
self
.
neighbours
=
neighbours
if
filename
:
if
filename
:
...
@@ -18,6 +19,8 @@ class Classifier:
...
@@ -18,6 +19,8 @@ class Classifier:
self
.
param
.
gamma
=
gamma
# Parameter for radial kernel
self
.
param
.
gamma
=
gamma
# Parameter for radial kernel
self
.
model
=
None
self
.
model
=
None
self
.
verbose
=
verbose
def
save
(
self
,
filename
):
def
save
(
self
,
filename
):
"""Save the SVM model in the given filename."""
"""Save the SVM model in the given filename."""
svm_save_model
(
filename
,
self
.
model
)
svm_save_model
(
filename
,
self
.
model
)
...
@@ -30,8 +33,9 @@ class Classifier:
...
@@ -30,8 +33,9 @@ class Classifier:
l
=
len
(
learning_set
)
l
=
len
(
learning_set
)
for
i
,
char
in
enumerate
(
learning_set
):
for
i
,
char
in
enumerate
(
learning_set
):
if
self
.
verbose
:
print
'Found "%s" -- %d of %d (%d%% done)'
\
print
'Found "%s" -- %d of %d (%d%% done)'
\
%
(
char
.
value
,
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
%
(
char
.
value
,
i
+
1
,
l
,
round
(
100
*
(
i
+
1
)
/
l
))
classes
.
append
(
float
(
ord
(
char
.
value
)))
classes
.
append
(
float
(
ord
(
char
.
value
)))
#features.append(char.get_feature_vector())
#features.append(char.get_feature_vector())
char
.
get_single_cell_feature_vector
(
self
.
neighbours
)
char
.
get_single_cell_feature_vector
(
self
.
neighbours
)
...
@@ -57,6 +61,7 @@ class Classifier:
...
@@ -57,6 +61,7 @@ class Classifier:
true_value
=
0
if
true_value
==
None
else
ord
(
true_value
)
true_value
=
0
if
true_value
==
None
else
ord
(
true_value
)
#x = character.get_feature_vector(self.cell_size)
#x = character.get_feature_vector(self.cell_size)
character
.
get_single_cell_feature_vector
(
self
.
neighbours
)
character
.
get_single_cell_feature_vector
(
self
.
neighbours
)
#p = svm_predict([true_value], [character.feature], self.model, '-b 1')
p
=
svm_predict
([
true_value
],
[
character
.
feature
],
self
.
model
)
p
=
svm_predict
([
true_value
],
[
character
.
feature
],
self
.
model
)
prediction_class
=
int
(
p
[
0
][
0
])
prediction_class
=
int
(
p
[
0
][
0
])
...
...
src/GaussianFilter.py
View file @
f957089b
...
@@ -2,8 +2,10 @@ from GrayscaleImage import GrayscaleImage
...
@@ -2,8 +2,10 @@ from GrayscaleImage import GrayscaleImage
from
scipy.ndimage
import
gaussian_filter
from
scipy.ndimage
import
gaussian_filter
class
GaussianFilter
:
class
GaussianFilter
:
"""This class can apply a Gaussian blur on an image."""
def
__init__
(
self
,
scale
):
def
__init__
(
self
,
scale
):
"""Create a GaussianFilter object with a given scale."""
self
.
scale
=
scale
self
.
scale
=
scale
def
get_filtered_copy
(
self
,
image
):
def
get_filtered_copy
(
self
,
image
):
...
@@ -12,12 +14,15 @@ class GaussianFilter:
...
@@ -12,12 +14,15 @@ class GaussianFilter:
return
GrayscaleImage
(
None
,
image
)
return
GrayscaleImage
(
None
,
image
)
def
filter
(
self
,
image
):
def
filter
(
self
,
image
):
"""Apply a Gaussian blur on the image data."""
image
.
data
=
gaussian_filter
(
image
.
data
,
self
.
scale
)
image
.
data
=
gaussian_filter
(
image
.
data
,
self
.
scale
)
def
get_scale
(
self
):
def
get_scale
(
self
):
"""Return the scale of the Gaussian kernel."""
return
self
.
scale
return
self
.
scale
def
set_scale
(
self
,
scale
):
def
set_scale
(
self
,
scale
):
"""Set the scale of the Gaussian kernel."""
self
.
scale
=
float
(
scale
)
self
.
scale
=
float
(
scale
)
scale
=
property
(
get_scale
,
set_scale
)
scale
=
property
(
get_scale
,
set_scale
)
src/LocalBinaryPatternizer.py
View file @
f957089b
...
@@ -57,7 +57,7 @@ class LocalBinaryPatternizer:
...
@@ -57,7 +57,7 @@ class LocalBinaryPatternizer:
|
(
self
.
is_pixel_darker
(
y
-
2
,
x
-
1
,
value
))
|
(
self
.
is_pixel_darker
(
y
-
2
,
x
-
1
,
value
))
def
create_features_vector
(
self
):
def
create_features_vector
(
self
):
'''Walk around the pixels in clokwise order, shifting 1 bit less at
'''Walk around the pixels in clo
c
kwise order, shifting 1 bit less at
each neighbour starting at 7 in the top-left corner. This gives a 8-bit
each neighbour starting at 7 in the top-left corner. This gives a 8-bit
feature number of a pixel'''
feature number of a pixel'''
self
.
setup_histograms
()
self
.
setup_histograms
()
...
...
src/find_svm_params.py
View file @
f957089b
...
@@ -86,7 +86,7 @@ i = 0
...
@@ -86,7 +86,7 @@ i = 0
for
c
in
C
:
for
c
in
C
:
for
y
in
Y
:
for
y
in
Y
:
classifier
=
Classifier
(
c
=
c
,
gamma
=
y
,
neighbours
=
neighbours
)
classifier
=
Classifier
(
c
=
c
,
gamma
=
y
,
neighbours
=
neighbours
,
verbose
=
1
)
classifier
.
train
(
learning_set
)
classifier
.
train
(
learning_set
)
result
=
classifier
.
test
(
test_set
)
result
=
classifier
.
test
(
test_set
)
...
...
src/run_classifier.py
0 → 100755
View file @
f957089b
#!/usr/bin/python
from
cPickle
import
load
from
sys
import
argv
,
exit
from
pylab
import
imsave
,
plot
,
subplot
,
imshow
,
show
,
axis
,
title
from
math
import
sqrt
,
ceil
import
os
from
Classifier
import
Classifier
if
len
(
argv
)
<
3
:
print
'Usage: python %s NEIGHBOURS BLUR_SCALE'
%
argv
[
0
]
exit
(
1
)
neighbours
=
int
(
argv
[
1
])
blur_scale
=
float
(
argv
[
2
])
suffix
=
'_%s_%s'
%
(
blur_scale
,
neighbours
)
test_set_file
=
'test_set%s.dat'
%
suffix
classifier_file
=
'classifier%s.dat'
%
suffix
print
'Loading classifier...'
classifier
=
Classifier
(
filename
=
classifier_file
)
classifier
.
neighbours
=
neighbours
print
'Loading test set...'
test_set
=
load
(
file
(
test_set_file
,
'r'
))
l
=
len
(
test_set
)
matches
=
0
#classified = {}
classified
=
[]
for
i
,
char
in
enumerate
(
test_set
):
prediction
=
classifier
.
classify
(
char
,
char
.
value
)
if
char
.
value
!=
prediction
:
classified
.
append
((
char
,
prediction
))
#key = '%s_as_%s' % (char.value, prediction)
#if key not in classified:
# classified[key] = [char]
#else:
# classified[key].append(char)
print
'"%s" was classified as "%s"'
\
%
(
char
.
value
,
prediction
)
else
:
matches
+=
1
print
'%d of %d (%d%% done)'
%
(
i
+
1
,
l
,
round
(
100
*
(
i
+
1
)
/
l
))
print
'
\
n
%d matches (%d%%), %d fails'
%
(
matches
,
\
round
(
100
*
matches
/
l
),
\
len
(
test_set
)
-
matches
)
# Show a grid plot of all faulty classified characters
print
'Plotting faulty classified characters...'
rows
=
int
(
ceil
(
sqrt
(
l
-
matches
)))
columns
=
int
(
ceil
((
l
-
matches
)
/
float
(
rows
)))
for
i
,
pair
in
enumerate
(
classified
):
char
,
prediction
=
pair
subplot
(
rows
,
columns
,
i
+
1
)
title
(
'%s as %s'
%
(
char
.
value
,
prediction
))
imshow
(
char
.
image
.
data
,
cmap
=
'gray'
)
axis
(
'off'
)
show
()
#print 'Saving faulty classified characters...'
#folder = '../images/faulty/'
#
#if not os.path.exists(folder):
# os.mkdir(folder)
#
#for filename, chars in classified.iteritems():
# if len(chars) == 1:
# imsave('%s%s' % (folder, filename), char.image.data, cmap='gray')
# else:
# for i, char in enumerate(chars):
# imsave('%s%s_%d' % (folder, filename, i), char.image.data, cmap='gray')
src/test_classifier.py
deleted
100755 → 0
View file @
728d5238
#!/usr/bin/python
from
cPickle
import
dump
,
load
from
Classifier
import
Classifier
if
len
(
argv
)
<
5
:
print
'Usage: python %s FILE_SUFFIX C GAMMA NEIGHBOURS'
%
argv
[
0
]
exit
(
1
)
print
'Loading learning set'
learning_set
=
load
(
file
(
'learning_set%s.dat'
%
argv
[
1
],
'r'
))
# Train the classifier with the learning set
classifier
=
Classifier
(
c
=
float
(
argv
[
1
]),
\
gamma
=
float
(
argv
[
2
]),
\
neighbours
=
int
(
argv
[
3
]))
classifier
.
train
(
learning_set
)
print
'Loading test set'
test_set
=
load
(
file
(
'test_set%s.dat'
%
argv
[
1
],
'r'
))
l
=
len
(
test_set
)
matches
=
0
for
i
,
char
in
enumerate
(
test_set
):
prediction
=
classifier
.
classify
(
char
,
char
.
value
)
if
char
.
value
==
prediction
:
print
':-----> Successfully recognized "%s"'
%
char
.
value
,
matches
+=
1
else
:
print
':( Expected character "%s", got "%s"'
\
%
(
char
.
value
,
prediction
),
print
' -- %d of %d (%d%% done)'
%
(
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
print
'
\
n
%d matches (%d%%), %d fails'
%
(
matches
,
\
int
(
100
*
matches
/
len
(
test_set
)),
\
len
(
test_set
)
-
matches
)
src/test_compare.py
View file @
f957089b
#!/usr/bin/python
#!/usr/bin/python
from
matplotlib.pyplot
import
imshow
,
subplot
,
show
from
matplotlib.pyplot
import
imshow
,
subplot
,
show
from
LocalBinaryPatternizer
import
LocalBinaryPatternizer
from
LocalBinaryPatternizer
import
LocalBinaryPatternizer
from
GrayscaleImage
import
GrayscaleImage
from
cPickle
import
load
from
cPickle
import
load
from
numpy
import
zeros
,
resize
from
numpy
import
zeros
chars
=
load
(
file
(
'characters.dat'
,
'r'
))[::
2
]
chars
=
load
(
file
(
'characters.dat'
,
'r'
))[::
2
]
left
=
None
left
=
None
...
...
src/test_performance.py
View file @
f957089b
#!/usr/bin/python
#!/usr/bin/python
from
os
import
listdir
from
os
import
listdir
from
cPickle
import
load
from
sys
import
argv
,
exit
from
sys
import
argv
,
exit
from
time
import
time
from
time
import
time
...
...
src/xml_helper_functions.py
View file @
f957089b
from
os
import
mkdir
from
os
import
mkdir
from
os.path
import
exists
from
os.path
import
exists
from
pylab
import
imsave
,
array
,
zeros
,
inv
,
dot
,
norm
,
svd
,
floor
from
pylab
import
array
,
zeros
,
inv
,
dot
,
svd
,
floor
from
xml.dom.minidom
import
parse
from
xml.dom.minidom
import
parse
from
Point
import
Point
from
Character
import
Character
from
Character
import
Character
from
GrayscaleImage
import
GrayscaleImage
from
GrayscaleImage
import
GrayscaleImage
from
NormalizedCharacterImage
import
NormalizedCharacterImage
from
NormalizedCharacterImage
import
NormalizedCharacterImage
from
LicensePlate
import
LicensePlate
from
LicensePlate
import
LicensePlate
# Gets the character data from a picture with a license plate
# sets the entire license plate of an image
def
retrieve_data
(
plate
,
corners
):
def
retrieve_data
(
image
,
corners
):
x0
,
y0
,
x1
,
y1
,
x2
,
y2
,
x3
,
y3
=
corners
x0
,
y0
=
corners
[
0
].
to_tuple
()
x1
,
y1
=
corners
[
1
].
to_tuple
()
x2
,
y2
=
corners
[
2
].
to_tuple
()
x3
,
y3
=
corners
[
3
].
to_tuple
()
M
=
max
(
x0
,
x1
,
x2
,
x3
)
-
min
(
x0
,
x1
,
x2
,
x3
)
M
=
int
(
1.2
*
(
max
(
x0
,
x1
,
x2
,
x3
)
-
min
(
x0
,
x1
,
x2
,
x3
))
)
N
=
max
(
y0
,
y1
,
y2
,
y3
)
-
min
(
y0
,
y1
,
y2
,
y3
)
N
=
max
(
y0
,
y1
,
y2
,
y3
)
-
min
(
y0
,
y1
,
y2
,
y3
)
matrix
=
array
([
matrix
=
array
([
...
@@ -25,7 +29,7 @@ def retrieve_data(plate, corners):
...
@@ -25,7 +29,7 @@ def retrieve_data(plate, corners):
[
0
,
0
,
0
,
x3
,
y3
,
1
,
-
N
*
x3
,
-
N
*
y3
,
-
N
]
[
0
,
0
,
0
,
x3
,
y3
,
1
,
-
N
*
x3
,
-
N
*
y3
,
-
N
]
])
])
P
=
get_transformation_matrix
(
matrix
)
P
=
inv
(
get_transformation_matrix
(
matrix
)
)
data
=
array
([
zeros
(
M
,
float
)]
*
N
)
data
=
array
([
zeros
(
M
,
float
)]
*
N
)
for
i
in
range
(
M
):
for
i
in
range
(
M
):
...
@@ -34,7 +38,7 @@ def retrieve_data(plate, corners):
...
@@ -34,7 +38,7 @@ def retrieve_data(plate, corners):
or_coor_h
=
(
or_coor
[
1
][
0
]
/
or_coor
[
2
][
0
],
or_coor_h
=
(
or_coor
[
1
][
0
]
/
or_coor
[
2
][
0
],
or_coor
[
0
][
0
]
/
or_coor
[
2
][
0
])
or_coor
[
0
][
0
]
/
or_coor
[
2
][
0
])
data
[
j
][
i
]
=
pV
(
plat
e
,
or_coor_h
[
0
],
or_coor_h
[
1
])
data
[
j
][
i
]
=
pV
(
imag
e
,
or_coor_h
[
0
],
or_coor_h
[
1
])
return
data
return
data
...
@@ -46,15 +50,19 @@ def get_transformation_matrix(matrix):
...
@@ -46,15 +50,19 @@ def get_transformation_matrix(matrix):
U
,
D
,
V
=
svd
(
matrix
)
U
,
D
,
V
=
svd
(
matrix
)
p
=
V
[
8
][:]
p
=
V
[
8
][:]
return
inv
(
array
([[
p
[
0
],
p
[
1
],
p
[
2
]],
[
p
[
3
],
p
[
4
],
p
[
5
]],
[
p
[
6
],
p
[
7
],
p
[
8
]]]))
return
array
([
[
p
[
0
],
p
[
1
],
p
[
2
]
],
[
p
[
3
],
p
[
4
],
p
[
5
]
],
[
p
[
6
],
p
[
7
],
p
[
8
]
]
])
def
pV
(
image
,
x
,
y
):
def
pV
(
image
,
x
,
y
):
#Get the value of a point (interpolated x, y) in the given image
#Get the value of a point (interpolated x, y) in the given image
if
not
image
.
in_bounds
(
x
,
y
):
if
image
.
in_bounds
(
x
,
y
):
return
0
x_low
=
floor
(
x
)
x_high
=
floor
(
x
+
1
)
x_low
,
x_high
=
floor
(
x
),
floor
(
x
+
1
)
y_low
=
floor
(
y
)
y_low
,
y_high
=
floor
(
y
),
floor
(
y
+
1
)
y_high
=
floor
(
y
+
1
)
x_y
=
(
x_high
-
x_low
)
*
(
y_high
-
y_low
)
x_y
=
(
x_high
-
x_low
)
*
(
y_high
-
y_low
)
a
=
x_high
-
x
a
=
x_high
-
x
...
@@ -67,42 +75,44 @@ def pV(image, x, y):
...
@@ -67,42 +75,44 @@ def pV(image, x, y):
+
image
[
x_low
,
y_high
]
/
x_y
*
a
*
d
\
+
image
[
x_low
,
y_high
]
/
x_y
*
a
*
d
\
+
image
[
x_high
,
y_high
]
/
x_y
*
c
*
d
+
image
[
x_high
,
y_high
]
/
x_y
*
c
*
d
return
0
def
xml_to_LicensePlate
(
filename
,
save_character
=
None
):
def
xml_to_LicensePlate
(
filename
,
save_character
=
None
):
plate
=
GrayscaleImage
(
'../images/Images/%s.jpg'
%
filename
)
image
=
GrayscaleImage
(
'../images/Images/%s.jpg'
%
filename
)
dom
=
parse
(
'../images/Infos/%s.info'
%
filename
)
dom
=
parse
(
'../images/Infos/%s.info'
%
filename
)
country
=
''
result_characters
=
[]
result
=
[]
version
=
get_node
(
dom
,
"current-version"
)
infos
=
by_tag
(
dom
,
"info"
)
for
info
in
infos
:
version
=
dom
.
getElementsByTagName
(
"current-version"
)[
0
].
firstChild
.
data
if
not
version
==
get_node
(
info
,
"version"
):
info
=
dom
.
getElementsByTagName
(
"info"
)
continue
country
=
get_node
(
info
,
"identification-letters"
)
for
i
in
info
:
temp
=
by_tag
(
info
,
"characters"
)
if
version
==
i
.
getElementsByTagName
(
"version"
)[
0
].
firstChild
.
data
:
if
not
temp
:
# no characters where found in the file
country
=
i
.
getElementsByTagName
(
"identification-letters"
)[
0
].
firstChild
.
data
break
temp
=
i
.
getElementsByTagName
(
"characters"
)
if
len
(
temp
):
characters
=
temp
[
0
].
childNodes
characters
=
temp
[
0
].
childNodes
else
:
characters
=
[]
break
for
i
,
char
in
enumerate
(
characters
):
for
i
,
character
in
enumerate
(
characters
):
if
not
char
.
nodeName
==
"character"
:
if
character
.
nodeName
==
"character"
:
continue
value
=
character
.
getElementsByTagName
(
"char"
)[
0
].
firstChild
.
data
corners
=
get_corners
(
character
)
value
=
get_node
(
char
,
"char"
)
corners
=
get_corners
(
char
)
if
not
len
(
corners
)
==
8
:
if
not
len
(
corners
)
==
4
:
break
break
data
=
retrieve_data
(
plate
,
corners
)
character_data
=
retrieve_data
(
image
,
corners
)
image
=
NormalizedCharacterImage
(
data
=
data
)
character_image
=
NormalizedCharacterImage
(
data
=
character_data
)
result
.
append
(
Character
(
value
,
corners
,
image
,
filename
))
result_characters
.
append
(
Character
(
value
,
corners
,
character_image
,
filename
))
if
save_character
:
if
save_character
:
character_image
=
GrayscaleImage
(
data
=
data
)
single_character
=
GrayscaleImage
(
data
=
character_data
)
path
=
"../images/LearningSet/%s"
%
value
path
=
"../images/LearningSet/%s"
%
value
image_path
=
"%s/%d_%s.jpg"
%
(
path
,
i
,
filename
.
split
(
'/'
)[
-
1
])
image_path
=
"%s/%d_%s.jpg"
%
(
path
,
i
,
filename
.
split
(
'/'
)[
-
1
])
...
@@ -110,28 +120,38 @@ def xml_to_LicensePlate(filename, save_character=None):
...
@@ -110,28 +120,38 @@ def xml_to_LicensePlate(filename, save_character=None):
mkdir
(
path
)
mkdir
(
path
)
if
not
exists
(
image_path
):
if
not
exists
(
image_path
):
character_image
.
save
(
image_path
)
single_character
.
save
(
image_path
)
return
LicensePlate
(
country
,
result
)
return
LicensePlate
(
country
,
result
_characters
)
def
get_node
(
node
,
tag
):
def
get_corners
(
dom
):
return
by_tag
(
node
,
tag
)[
0
].
firstChild
.
data
nodes
=
dom
.
getElementsByTagName
(
"point"
)
corners
=
[]
def
by_tag
(
node
,
tag
):
margin_y
=
3
return
node
.
getElementsByTagName
(
tag
)
margin_x
=
2
def
get_attr
(
node
,
attr
):
corners
.
append
(
return
int
(
node
.
getAttribute
(
attr
))
Point
(
get_coord
(
nodes
[
0
],
"x"
)
-
margin_x
,
get_coord
(
nodes
[
0
],
"y"
)
-
margin_y
)
)
def
get_corners
(
dom
):
corners
.
append
(
p
=
by_tag
(
dom
,
"point"
)
Point
(
get_coord
(
nodes
[
1
],
"x"
)
+
margin_x
,
get_coord
(
nodes
[
1
],
"y"
)
-
margin_y
)
)
corners
.
append
(
Point
(
get_coord
(
nodes
[
2
],
"x"
)
+
margin_x
,
get_coord
(
nodes
[
2
],
"y"
)
+
margin_y
)
)
corners
.
append
(
Point
(
get_coord
(
nodes
[
3
],
"x"
)
-
margin_x
,
get_coord
(
nodes
[
3
],
"y"
)
+
margin_y
)
)
# Extra padding
return
corners
y
=
3
x
=
2
# return 8 values (x0,y0, .., x3,y3)
def
get_coord
(
node
,
attribute
):
return
get_attr
(
p
[
0
],
"x"
)
-
x
,
get_attr
(
p
[
0
],
"y"
)
-
y
,
\
return
int
(
node
.
getAttribute
(
attribute
))
get_attr
(
p
[
1
],
"x"
)
+
x
,
get_attr
(
p
[
1
],
"y"
)
-
y
,
\
get_attr
(
p
[
2
],
"x"
)
+
x
,
get_attr
(
p
[
2
],
"y"
)
+
y
,
\
get_attr
(
p
[
3
],
"x"
)
-
x
,
get_attr
(
p
[
3
],
"y"
)
+
y
todo.txt
0 → 100644
View file @
f957089b
- Beste classifier runnen en kijken welke karakters fout gaan
- code documenteren
- verslag: conclusies aan parameters verbinden
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment