Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
L
licenseplates
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Wiki
Wiki
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Taddeüs Kroes
licenseplates
Commits
b91057fc
Commit
b91057fc
authored
Dec 21, 2011
by
Taddeus Kroes
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Merged classifier test scripts.
parent
45911a87
Changes
4
Show whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
45 additions
and
62 deletions
+45
-62
src/Classifier.py
src/Classifier.py
+7
-3
src/find_svm_params.py
src/find_svm_params.py
+1
-1
src/run_classifier.py
src/run_classifier.py
+37
-19
src/test_classifier.py
src/test_classifier.py
+0
-39
No files found.
src/Classifier.py
View file @
b91057fc
...
...
@@ -3,7 +3,8 @@ from svmutil import svm_train, svm_problem, svm_parameter, svm_predict, \
class
Classifier
:
def
__init__
(
self
,
c
=
None
,
gamma
=
None
,
filename
=
None
,
neighbours
=
3
):
def
__init__
(
self
,
c
=
None
,
gamma
=
None
,
filename
=
None
,
neighbours
=
3
,
\
verbose
=
0
):
self
.
neighbours
=
neighbours
if
filename
:
...
...
@@ -18,6 +19,8 @@ class Classifier:
self
.
param
.
gamma
=
gamma
# Parameter for radial kernel
self
.
model
=
None
self
.
verbose
=
verbose
def
save
(
self
,
filename
):
"""Save the SVM model in the given filename."""
svm_save_model
(
filename
,
self
.
model
)
...
...
@@ -30,8 +33,9 @@ class Classifier:
l
=
len
(
learning_set
)
for
i
,
char
in
enumerate
(
learning_set
):
if
self
.
verbose
:
print
'Found "%s" -- %d of %d (%d%% done)'
\
%
(
char
.
value
,
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
%
(
char
.
value
,
i
+
1
,
l
,
round
(
100
*
(
i
+
1
)
/
l
))
classes
.
append
(
float
(
ord
(
char
.
value
)))
#features.append(char.get_feature_vector())
char
.
get_single_cell_feature_vector
(
self
.
neighbours
)
...
...
src/find_svm_params.py
View file @
b91057fc
...
...
@@ -86,7 +86,7 @@ i = 0
for
c
in
C
:
for
y
in
Y
:
classifier
=
Classifier
(
c
=
c
,
gamma
=
y
,
neighbours
=
neighbours
)
classifier
=
Classifier
(
c
=
c
,
gamma
=
y
,
neighbours
=
neighbours
,
verbose
=
1
)
classifier
.
train
(
learning_set
)
result
=
classifier
.
test
(
test_set
)
...
...
src/run_classifier.py
View file @
b91057fc
#!/usr/bin/python
from
cPickle
import
load
from
sys
import
argv
,
exit
from
pylab
import
imsave
from
pylab
import
imsave
,
plot
,
subplot
,
imshow
,
show
,
axis
,
title
from
math
import
sqrt
,
ceil
import
os
from
Classifier
import
Classifier
...
...
@@ -25,39 +26,56 @@ print 'Loading test set...'
test_set
=
load
(
file
(
test_set_file
,
'r'
))
l
=
len
(
test_set
)
matches
=
0
classified
=
{}
#classified = {}
classified
=
[]
for
i
,
char
in
enumerate
(
test_set
):
prediction
=
classifier
.
classify
(
char
,
char
.
value
)
if
char
.
value
!=
prediction
:
key
=
'%s_as_%s'
%
(
char
.
value
,
prediction
)
classified
.
append
((
char
,
prediction
)
)
if
key
not
in
classified
:
classified
[
key
]
=
[
char
]
else
:
classified
[
key
].
append
(
char
)
#key = '%s_as_%s' % (char.value, prediction)
#if key not in classified:
# classified[key] = [char]
#else:
# classified[key].append(char)
print
'"%s" was classified as "%s"'
\
%
(
char
.
value
,
prediction
)
else
:
matches
+=
1
print
'%d of %d (%d%% done)'
%
(
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
print
'%d of %d (%d%% done)'
%
(
i
+
1
,
l
,
round
(
100
*
(
i
+
1
)
/
l
))
print
'
\
n
%d matches (%d%%), %d fails'
%
(
matches
,
\
int
(
100
*
matches
/
l
),
\
round
(
100
*
matches
/
l
),
\
len
(
test_set
)
-
matches
)
print
'Saving faulty classified characters...'
folder
=
'../images/faulty/'
# Show a grid plot of all faulty classified characters
print
'Plotting faulty classified characters...'
rows
=
int
(
ceil
(
sqrt
(
l
-
matches
)))
columns
=
int
(
ceil
((
l
-
matches
)
/
float
(
rows
)))
if
not
os
.
path
.
exists
(
folder
):
os
.
mkdir
(
folder
)
for
i
,
pair
in
enumerate
(
classified
):
char
,
prediction
=
pair
subplot
(
rows
,
columns
,
i
+
1
)
title
(
'%s as %s'
%
(
char
.
value
,
prediction
))
imshow
(
char
.
image
.
data
,
cmap
=
'gray'
)
axis
(
'off'
)
for
filename
,
chars
in
classified
.
iteritems
():
if
len
(
chars
)
==
1
:
imsave
(
'%s%s'
%
(
folder
,
filename
),
char
.
image
.
data
,
cmap
=
'gray'
)
else
:
for
i
,
char
in
enumerate
(
chars
):
imsave
(
'%s%s_%d'
%
(
folder
,
filename
,
i
),
char
.
image
.
data
,
cmap
=
'gray'
)
show
()
#print 'Saving faulty classified characters...'
#folder = '../images/faulty/'
#
#if not os.path.exists(folder):
# os.mkdir(folder)
#
#for filename, chars in classified.iteritems():
# if len(chars) == 1:
# imsave('%s%s' % (folder, filename), char.image.data, cmap='gray')
# else:
# for i, char in enumerate(chars):
# imsave('%s%s_%d' % (folder, filename, i), char.image.data, cmap='gray')
src/test_classifier.py
deleted
100755 → 0
View file @
45911a87
#!/usr/bin/python
from
cPickle
import
load
from
sys
import
argv
,
exit
from
Classifier
import
Classifier
if
len
(
argv
)
<
5
:
print
'Usage: python %s FILE_SUFFIX C GAMMA NEIGHBOURS'
%
argv
[
0
]
exit
(
1
)
print
'Loading learning set'
learning_set
=
load
(
file
(
'learning_set%s.dat'
%
argv
[
1
],
'r'
))
# Train the classifier with the learning set
classifier
=
Classifier
(
c
=
float
(
argv
[
1
]),
\
gamma
=
float
(
argv
[
2
]),
\
neighbours
=
int
(
argv
[
3
]))
classifier
.
train
(
learning_set
)
print
'Loading test set...'
test_set
=
load
(
file
(
'test_set%s.dat'
%
argv
[
1
],
'r'
))
l
=
len
(
test_set
)
matches
=
0
for
i
,
char
in
enumerate
(
test_set
):
prediction
=
classifier
.
classify
(
char
,
char
.
value
)
if
char
.
value
==
prediction
:
print
':-----> Successfully recognized "%s"'
%
char
.
value
,
matches
+=
1
else
:
print
':( Expected character "%s", got "%s"'
\
%
(
char
.
value
,
prediction
),
print
' -- %d of %d (%d%% done)'
%
(
i
+
1
,
l
,
int
(
100
*
(
i
+
1
)
/
l
))
print
'
\
n
%d matches (%d%%), %d fails'
%
(
matches
,
\
int
(
100
*
matches
/
l
),
\
len
(
test_set
)
-
matches
)
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment