Commit 92b7ce59 authored by Taddeus Kroes's avatar Taddeus Kroes

Cleaned up test scripts.

parent fd9ecb95
...@@ -2,10 +2,8 @@ ...@@ -2,10 +2,8 @@
from cPickle import load from cPickle import load
from Classifier import Classifier from Classifier import Classifier
#C = [float(2 ** p) for p in xrange(-5, 16, 2)] C = [float(2 ** p) for p in xrange(-5, 16, 2)]
#Y = [float(2 ** p) for p in xrange(-15, 4, 2)] Y = [float(2 ** p) for p in xrange(-15, 4, 2)]
C = [float(2 ** p) for p in xrange(1, 16, 2)]
Y = [float(2 ** p) for p in xrange(-13, 4, 2)]
best_classifier = None best_classifier = None
print 'Loading learning set...' print 'Loading learning set...'
...@@ -17,7 +15,7 @@ print 'Test set:', [c.value for c in test_set] ...@@ -17,7 +15,7 @@ print 'Test set:', [c.value for c in test_set]
# Perform a grid-search on different combinations of soft margin and gamma # Perform a grid-search on different combinations of soft margin and gamma
results = [] results = []
maximum = (0, 0, 0) best = (0,)
i = 0 i = 0
for c in C: for c in C:
...@@ -26,9 +24,8 @@ for c in C: ...@@ -26,9 +24,8 @@ for c in C:
classifier.train(learning_set) classifier.train(learning_set)
result = classifier.test(test_set) result = classifier.test(test_set)
if result > maximum[2]: if result > best[0]:
maximum = (c, y, result) best = (result, c, y, classifier)
best_classifier = classifier
results.append(result) results.append(result)
i += 1 i += 1
...@@ -52,6 +49,6 @@ for c in C: ...@@ -52,6 +49,6 @@ for c in C:
print print
print '\nmax:', maximum print '\nBest result: %.3f%% for C = %f and gamma = %f' % best[:3]
best_classifier.save('best_classifier.dat') best[3].save('classifier.dat')
...@@ -41,11 +41,11 @@ learning_set = load(file('learning_set.dat', 'r')) ...@@ -41,11 +41,11 @@ learning_set = load(file('learning_set.dat', 'r'))
# Train the classifier with the learning set # Train the classifier with the learning set
classifier = Classifier(c=512, gamma=.125, cell_size=12) classifier = Classifier(c=512, gamma=.125, cell_size=12)
classifier.train(learning_set) classifier.train(learning_set)
#classifier.save('classifier') classifier.save('classifier.dat')
#print 'Saved classifier' print 'Saved classifier'
#---------------------------------------------------------------- #----------------------------------------------------------------
#print 'Loading classifier' print 'Loading classifier'
#classifier = Classifier(filename='classifier') classifier = Classifier(filename='classifier.dat')
print 'Loading test set' print 'Loading test set'
test_set = load(file('test_set.dat', 'r')) test_set = load(file('test_set.dat', 'r'))
l = len(test_set) l = len(test_set)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment