Commit 92b7ce59 authored by Taddeus Kroes's avatar Taddeus Kroes

Cleaned up test scripts.

parent fd9ecb95
......@@ -2,10 +2,8 @@
from cPickle import load
from Classifier import Classifier
#C = [float(2 ** p) for p in xrange(-5, 16, 2)]
#Y = [float(2 ** p) for p in xrange(-15, 4, 2)]
C = [float(2 ** p) for p in xrange(1, 16, 2)]
Y = [float(2 ** p) for p in xrange(-13, 4, 2)]
C = [float(2 ** p) for p in xrange(-5, 16, 2)]
Y = [float(2 ** p) for p in xrange(-15, 4, 2)]
best_classifier = None
print 'Loading learning set...'
......@@ -17,7 +15,7 @@ print 'Test set:', [c.value for c in test_set]
# Perform a grid-search on different combinations of soft margin and gamma
results = []
maximum = (0, 0, 0)
best = (0,)
i = 0
for c in C:
......@@ -26,9 +24,8 @@ for c in C:
classifier.train(learning_set)
result = classifier.test(test_set)
if result > maximum[2]:
maximum = (c, y, result)
best_classifier = classifier
if result > best[0]:
best = (result, c, y, classifier)
results.append(result)
i += 1
......@@ -52,6 +49,6 @@ for c in C:
print
print '\nmax:', maximum
print '\nBest result: %.3f%% for C = %f and gamma = %f' % best[:3]
best_classifier.save('best_classifier.dat')
best[3].save('classifier.dat')
......@@ -41,11 +41,11 @@ learning_set = load(file('learning_set.dat', 'r'))
# Train the classifier with the learning set
classifier = Classifier(c=512, gamma=.125, cell_size=12)
classifier.train(learning_set)
#classifier.save('classifier')
#print 'Saved classifier'
classifier.save('classifier.dat')
print 'Saved classifier'
#----------------------------------------------------------------
#print 'Loading classifier'
#classifier = Classifier(filename='classifier')
print 'Loading classifier'
classifier = Classifier(filename='classifier.dat')
print 'Loading test set'
test_set = load(file('test_set.dat', 'r'))
l = len(test_set)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment