Commit 81981c8b authored by Jayke Meijer's avatar Jayke Meijer

Merge branch 'master' of github.com:taddeus/licenseplates

parents 98c9cb74 8e465dae
...@@ -3,7 +3,8 @@ from svmutil import svm_train, svm_problem, svm_parameter, svm_predict, \ ...@@ -3,7 +3,8 @@ from svmutil import svm_train, svm_problem, svm_parameter, svm_predict, \
class Classifier: class Classifier:
def __init__(self, c=None, gamma=None, filename=None, neighbours=3): def __init__(self, c=None, gamma=None, filename=None, neighbours=3, \
verbose=0):
self.neighbours = neighbours self.neighbours = neighbours
if filename: if filename:
...@@ -18,6 +19,8 @@ class Classifier: ...@@ -18,6 +19,8 @@ class Classifier:
self.param.gamma = gamma # Parameter for radial kernel self.param.gamma = gamma # Parameter for radial kernel
self.model = None self.model = None
self.verbose = verbose
def save(self, filename): def save(self, filename):
"""Save the SVM model in the given filename.""" """Save the SVM model in the given filename."""
svm_save_model(filename, self.model) svm_save_model(filename, self.model)
...@@ -30,8 +33,9 @@ class Classifier: ...@@ -30,8 +33,9 @@ class Classifier:
l = len(learning_set) l = len(learning_set)
for i, char in enumerate(learning_set): for i, char in enumerate(learning_set):
if self.verbose:
print 'Found "%s" -- %d of %d (%d%% done)' \ print 'Found "%s" -- %d of %d (%d%% done)' \
% (char.value, i + 1, l, int(100 * (i + 1) / l)) % (char.value, i + 1, l, round(100 * (i + 1) / l))
classes.append(float(ord(char.value))) classes.append(float(ord(char.value)))
#features.append(char.get_feature_vector()) #features.append(char.get_feature_vector())
char.get_single_cell_feature_vector(self.neighbours) char.get_single_cell_feature_vector(self.neighbours)
......
...@@ -86,7 +86,7 @@ i = 0 ...@@ -86,7 +86,7 @@ i = 0
for c in C: for c in C:
for y in Y: for y in Y:
classifier = Classifier(c=c, gamma=y, neighbours=neighbours) classifier = Classifier(c=c, gamma=y, neighbours=neighbours, verbose=1)
classifier.train(learning_set) classifier.train(learning_set)
result = classifier.test(test_set) result = classifier.test(test_set)
......
#!/usr/bin/python #!/usr/bin/python
from cPickle import load from cPickle import load
from sys import argv, exit from sys import argv, exit
from pylab import imsave from pylab import imsave, plot, subplot, imshow, show, axis, title
from math import sqrt, ceil
import os import os
from Classifier import Classifier from Classifier import Classifier
...@@ -25,39 +26,56 @@ print 'Loading test set...' ...@@ -25,39 +26,56 @@ print 'Loading test set...'
test_set = load(file(test_set_file, 'r')) test_set = load(file(test_set_file, 'r'))
l = len(test_set) l = len(test_set)
matches = 0 matches = 0
classified = {} #classified = {}
classified = []
for i, char in enumerate(test_set): for i, char in enumerate(test_set):
prediction = classifier.classify(char, char.value) prediction = classifier.classify(char, char.value)
if char.value != prediction: if char.value != prediction:
key = '%s_as_%s' % (char.value, prediction) classified.append((char, prediction))
if key not in classified: #key = '%s_as_%s' % (char.value, prediction)
classified[key] = [char]
else: #if key not in classified:
classified[key].append(char) # classified[key] = [char]
#else:
# classified[key].append(char)
print '"%s" was classified as "%s"' \ print '"%s" was classified as "%s"' \
% (char.value, prediction) % (char.value, prediction)
else: else:
matches += 1 matches += 1
print '%d of %d (%d%% done)' % (i + 1, l, int(100 * (i + 1) / l)) print '%d of %d (%d%% done)' % (i + 1, l, round(100 * (i + 1) / l))
print '\n%d matches (%d%%), %d fails' % (matches, \ print '\n%d matches (%d%%), %d fails' % (matches, \
int(100 * matches / l), \ round(100 * matches / l), \
len(test_set) - matches) len(test_set) - matches)
print 'Saving faulty classified characters...' # Show a grid plot of all faulty classified characters
folder = '../images/faulty/' print 'Plotting faulty classified characters...'
rows = int(ceil(sqrt(l - matches)))
columns = int(ceil((l - matches) / float(rows)))
if not os.path.exists(folder): for i, pair in enumerate(classified):
os.mkdir(folder) char, prediction = pair
subplot(rows, columns, i + 1)
title('%s as %s' % (char.value, prediction))
imshow(char.image.data, cmap='gray')
axis('off')
for filename, chars in classified.iteritems(): show()
if len(chars) == 1:
imsave('%s%s' % (folder, filename), char.image.data, cmap='gray') #print 'Saving faulty classified characters...'
else: #folder = '../images/faulty/'
for i, char in enumerate(chars): #
imsave('%s%s_%d' % (folder, filename, i), char.image.data, cmap='gray') #if not os.path.exists(folder):
# os.mkdir(folder)
#
#for filename, chars in classified.iteritems():
# if len(chars) == 1:
# imsave('%s%s' % (folder, filename), char.image.data, cmap='gray')
# else:
# for i, char in enumerate(chars):
# imsave('%s%s_%d' % (folder, filename, i), char.image.data, cmap='gray')
#!/usr/bin/python
from cPickle import load
from sys import argv, exit
from Classifier import Classifier
if len(argv) < 5:
print 'Usage: python %s FILE_SUFFIX C GAMMA NEIGHBOURS' % argv[0]
exit(1)
print 'Loading learning set'
learning_set = load(file('learning_set%s.dat' % argv[1], 'r'))
# Train the classifier with the learning set
classifier = Classifier(c=float(argv[1]), \
gamma=float(argv[2]), \
neighbours=int(argv[3]))
classifier.train(learning_set)
print 'Loading test set...'
test_set = load(file('test_set%s.dat' % argv[1], 'r'))
l = len(test_set)
matches = 0
for i, char in enumerate(test_set):
prediction = classifier.classify(char, char.value)
if char.value == prediction:
print ':-----> Successfully recognized "%s"' % char.value,
matches += 1
else:
print ':( Expected character "%s", got "%s"' \
% (char.value, prediction),
print ' -- %d of %d (%d%% done)' % (i + 1, l, int(100 * (i + 1) / l))
print '\n%d matches (%d%%), %d fails' % (matches, \
int(100 * matches / l), \
len(test_set) - matches)
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment