Commit 3303c3ba authored by Fabien's avatar Fabien

Learning set generator

parent 57cdc26e
from os import mkdir
from os.path import exists
from math import acos
from pylab import imsave, array, zeros, inv, dot, norm, svd, floor
from xml.dom.minidom import parse
from Point import Point
from GrayscaleImage import GrayscaleImage
class LearningSetGenerator:
def __init__(self, folder_nr, file_nr):
filename = '%04d/00991_%04d%02d' % (folder_nr, folder_nr, file_nr)
self.image = GrayscaleImage('../images/Images/%s.jpg' % filename)
self.read_xml(filename)
# sets the entire license plate of an image
def retrieve_data(self, corners):
x0, y0 = corners[0].to_tuple()
x1, y1 = corners[1].to_tuple()
x2, y2 = corners[2].to_tuple()
x3, y3 = corners[3].to_tuple()
M = int(1.2 * (max(x0, x1, x2, x3) - min(x0, x1, x2, x3)))
N = max(y0, y1, y2, y3) - min(y0, y1, y2, y3)
matrix = array([
[x0, y0, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, x0, y0, 1, 0, 0, 0],
[x1, y1, 1, 0, 0, 0, -M * x0, -M * y1, -M],
[ 0, 0, 0, x1, y1, 1, 0, 0, 0],
[x2, y2, 1, 0, 0, 0, -M * x2, -M * y2, -M],
[ 0, 0, 0, x2, y2, 1, -N * x2, -N * y2, -N],
[x3, y3, 1, 0, 0, 0, 0, 0, 0],
[ 0, 0, 0, x3, y3, 1, -N * x3, -N * y3, -N]
])
P = inv(self.get_transformation_matrix(matrix))
data = array([zeros(M, float)] * N)
for i in range(0, M):
for j in range(0, N):
or_coor = dot(P, ([[i],[j],[1]]))
or_coor_h = (or_coor[1][0] / or_coor[2][0],
or_coor[0][0] / or_coor[2][0])
data[j][i] = self.pV(or_coor_h[0], or_coor_h[1])
return data
def get_transformation_matrix(self, matrix):
# Get the vector p and the values that are in there by taking the SVD.
# Since D is diagonal with the eigenvalues sorted from large to small
# on the diagonal, the optimal q in min ||Dq|| is q = [[0]..[1]].
# Therefore, p = Vq means p is the last column in V.
U, D, V = svd(matrix)
p = V[8][:]
return array([
[ p[0], p[1], p[2] ],
[ p[3], p[4], p[5] ],
[ p[6], p[7], p[8] ]
])
def pV(self, x, y):
image = self.image
#Get the value of a point (interpolated x, y) in the given image
if image.in_bounds(x, y):
x_low = floor(x)
x_high = floor(x + 1)
y_low = floor(y)
y_high = floor(y + 1)
x_y = (x_high - x_low) * (y_high - y_low)
a = x_high - x
b = y_high - y
c = x - x_low
d = y - y_low
return image[x_low, y_low] / x_y * a * b \
+ image[x_high, y_low] / x_y * c * b \
+ image[x_low , y_high] / x_y * a * d \
+ image[x_high, y_high] / x_y * c * d
return 0
def read_xml(self, filename):
dom = parse('../images/Infos/%s.info' % filename)
self.characters = []
version = dom.getElementsByTagName("current-version")[0].firstChild.data
info = dom.getElementsByTagName("info")
for i in info:
if version == i.getElementsByTagName("version")[0].firstChild.data:
self.country = i.getElementsByTagName("identification-letters")[0].firstChild.data
temp = i.getElementsByTagName("characters")
if len(temp):
characters = temp[0].childNodes
else:
self.characters = []
break
for i, character in enumerate(characters):
if character.nodeName == "character":
value = character.getElementsByTagName("char")[0].firstChild.data
corners = self.get_corners(character)
if not len(corners) == 4:
break
image = GrayscaleImage(data = self.retrieve_data(corners))
print value
path = "../images/LearningSet/%s" % value
image_path = "%s/%d_%s.jpg" % (path, i, filename.split('/')[-1])
if not exists(path):
mkdir(path)
if not exists(image_path):
image.save(image_path)
break
def get_corners(self, dom):
nodes = dom.getElementsByTagName("point")
corners = []
for node in nodes:
corners.append(Point(node))
return corners
for i in range(1):
for j in range(1):
try:
filename = '%04d/00991_%04d%02d.info' % (i, i, j)
print 'loading file "%s"' % filename
plate = LearningSetGenerator(i, j)
except:
print "failure"
\ No newline at end of file
......@@ -116,7 +116,7 @@ class LicensePlate:
data = self.retrieve_data(corners)
image = NormalizedCharacterImage(data=data)
self.characters.append(Character(value, corners, image))
self.characters.append(Character(value, corners, image, filename))
break
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment