
University of Amsterdam Compilerbouw
System and Network Engineering Lab 2014/2015
Dr Clemens Grelck February 6, 2015

Course Project

CiviC Language Manual
Document Version 2.1

1 Introduction

The course project is the step-wise engineering of a fully-fledged compiler for the model pro-
gramming language CiviC (Civilised C). In this context the term model programming language
emphasises that CiviC is not meant to be the next big hype in programming language research, but
rather it is a programming language that exhibits characteristic features of structured imperative
programming languages in general while at the same time its design avoids repetition of features
and thus is sufficiently restricted in size and complexity to actually succeed in implementing it in
an 8-week course.

This document describes CiviC, the source language for the compiler project. The target language
is assembly code for the CiviC virtual machine, CiviC-VM, which could best be described as a
simplified variant of the Java virtual machine. The virtual machine is described in a separate
document made available as the course proceeds.

Whenever this document (deliberately or not) leaves certain aspects of the CiviC language un-
specified or, more precisely, under-specified, the corresponding rule of the C language shall take
effect.

2 CiviC Programs

A CiviC program is a non-empty sequence of function declarations, function definitions, global
variable declarations and global variable definitions. Fig. 1 shows the corresponding syntax used.

CiviC supports separate compilation in a similar way as C does. The scope of symbols, i.e. functions
and global variables, can either be confined to the compilation unit (i.e. the file) they are defined in
or their scope can extend to the entire program typically consisting of a number of such compilation
units. Unlike C, CiviC is conservative with respect to visibility between compilation units. This
means that by default the scope of a symbol is limited to the current compilation unit. Only if
the definition of the function or global variable is preceded by the key word export, the symbol
is visible outside the current compilation unit.

If some symbol defined outside the current compilation unit is to be used, a local function or
global variable declaration is required. Like in C, we use the key word extern for this purpose.
The C preprocessor is run on each source file by the CiviC compiler. This allows for the use of
source and header files just as in C.

A CiviC program, consisting of potentially multiple compilation units, must contain exactly one
exported function named main, which serves as the starting point of program execution. This
function is supposed to take no parameters (no support for command line interpretation for now)
and yields an integer value that will be returned to the calling environment, typically a Unix
command shell.

1

Program ⇒ [Declaration]+

Declaration ⇒ FunDec | FunDef | GlobalDec | GlobalDef

FunDec ⇒ extern FunHeader ;

FunDef ⇒ [export] FunHeader { FunBody }

FunHeader ⇒ RetType Id ([Param [, Param]*])

RetType ⇒ void | BasicType

GlobalDec ⇒ extern Type Id ;

GlobalDef ⇒ [export] Type Id [= Expr] ;

Type ⇒ BasicType

BasicType ⇒ bool | int | float

Param ⇒ Type Id

Figure 1: Top-level syntax of CiviC programs

Identifiers may consist of letters, both small and capital, digits and the underscore character.
However, identifiers must start with a letter. This restriction facilitates the introduction of fresh
identifiers that are guaranteed not to conflict with any user supplied identifiers.

3 Statement Language

Fig. 2 shows the statement syntax of CiviC. The body of a CiviC function consists of a potentially
empty sequence of declarations of local variables followed by an again potentially empty sequence
of statements and an optional return statement. Like in C variables can be initialised at the point
of declaration. Unlike in C, only one variable can be declared at a time. Again unlike C, the return
statement must be the last statement within a function’s body and, consequently, no more than
one return statement per function is allowed. CiviC only supports the declaration of local variables
in the beginning of function bodies and not in further (nested) blocks.

A statement is either an assignment, a procedure call or a control flow construct. Conditionals
and uncounted loops (if-, while- and do-statements) are equivalent to their C counterparts with
the exception that any predicate expression must evaluate to a Boolean value. More precisely,
CiviC explicitly distinguishes between integer and Boolean values and variables.

Unlike C, CiviC features a proper counted loop with a dedicated induction variable. The three
expressions that must be of type int denote the (inclusive) start value, the (exclusive) stop value
and (optionally) the increment/decrement step value. The default step value is 1. With a positive
step value the start value becomes the inclusive lower bound of the iteration space and the stop
value the exclusive upper bound. A step value of zero is not permitted and may lead to undefined
behaviour. With a negative step value the start value becomes the inclusive upper bound and the
stop value the exclusive lower bound of the iteration space. All three expressions are evaluated
exactly once, before the execution of the loop. Assignments to the induction variable inside
the loop body are illegal. Consequently, the trip count of a CiviC for-loop is always known in

2

FunBody ⇒ [VarDec]* [Statement]* [Return]

VarDec ⇒ Type Id [= Expr] ;

Statement ⇒ Id = Expr ;
| Id ([Expr [, Expr]*]) ;
| if (Expr) Block [else Block]
| while (Expr) Block
| do Block while (Expr) ;
| for (int Id = Expr , Expr [, Expr]) Block

Block ⇒ { [Statement]* }
| Statement

Return ⇒ return Expr ;

Figure 2: Syntax of CiviC statement language

advance. The scope of the induction variable is confined to the loop body. The special nature of
the induction variable is emphasised by preceding its definition by the type key word int, which
resembles the syntax of a variable declaration. Technically, of course, the induction variable must
be of type int anyways, hence no additional information is provided.

Like in C, any function regardless of its return type can be referred to in a procedure call. In case
that function turns out not to be a (void-function), but in fact does yield a value, that value is
simply discarded. Last but not least, CiviC supports single-line as well as multi-line comments in
the same style as C and C++.

4 Expression Language

The syntax of the CiviC expression language is shown in Fig. 3. It features the usual arithmetic,
relational and logical operators as known from C. All operator associativities and precedences are
defined as in C proper.

All binary operators are only defined on operands of exactly the same type, i.e. there is no implicit
conversion in CiviC. Arithmetic operators are defined on integer numbers, where they again yield
an integer number, and on floating point numbers, where they again yield a floating point number.
The modulo operator is an exception: it is only defined on integer numbers and yields an integer
number. The arithmetic operators for addition and multiplication are also defined on Boolean
operands where they implement strict logic disjunction and conjunction, respectively.

Regardless of their operand types, relational operators yield a Boolean value. The relational op-
erators for equality and inequality are defined on all basic types. On Boolean operands they
complement strict logic disjunction and conjunction in supporting all potential relationships be-
tween two Boolean values. The remaining four relational operators are only defined for integer
and floating point numbers as operand values.

The logic operators are only defined for Boolean operand values. They differ from arithmetic
and relational operators in one more aspect: if the value of the left operand determines the
operation’s result, the right operand expression is not evaluated. This operational behaviour is
called short circuit Boolean evaluation. The operators are also called to be non-strict or lazy
in their right operand expression. This is more than an (optional) optimisation as the following
predicate illustrates: (x!=0 && y/x > 42) .

3

Expr ⇒ (Expr)
| Expr BinOp Expr
| MonOp Expr
| (BasicType) Expr
| Id ([Expr [, Expr]*])
| Id
| Const

BinOp ⇒ ArithOp | RelOp | LogicOp

ArithOp ⇒ + | - | * | / | %

RelOp ⇒ == | != | < | <= | > | >=

LogicOp ⇒ && | ||

MonOp ⇒ - | !

Const ⇒ BoolConst
| IntConst
| FloatConst

BoolConst ⇒ true
| false

Figure 3: Syntax of CiviC expression language

Unlike C, CiviC does not support implicit conversion between values of the different basic types.
Consequently, any type mismatch between operand expressions and operator expectations, as
detailed above, is a type error. Furthermore, types of argument expressions in function applications
must match the corresponding declared parameter types. Likewise, the type of a function’s return
expression must match the function’s return type.

Cast expressions can be used to explicitly convert values between the three basic types. Conversions
between integer and floating point numbers are defined as in C. The conversion of the Boolean
value false into an integer or a floating point number yields 0 or 0.0, respectively. Likewise,
the conversion of the Boolean value true into an integer or a floating point number yields 1 or
1.0, respectively. The conversion of both integer and floating point numbers into Boolean values
is equivalent to applying the inequality operator to that number and the numerical constant 0 or
0.0 respectively.

The unary minus operator can be applied to both integer and floating point numbers, whereas the
unary negation operator can only be applied to Boolean values. Last not least, numerical constants
are defined as in C proper, just as function calls with and without return value assignment.

5 Scoping Rules

The scoping rules in C are fairly odd when it comes to comparing assignment statements and
variable declarations with initialisation. Take for instance the assignment statement

a = a + 1;

that increments the value of integer variable a. In this example, quite obviously, the a on the
right hand side of the assignment refers to the old value of a, which is then overwritten by the

4

incremented value. In other words the new value of a is only visible from the subsequent statement
onwards.

In a variable declaration with initialisation expression, however, almost the same code example
has a very different meaning. In a C variable declaration

int a = a + 1;

the scope of the newly declared variable a does extend to the initialisation expression. In the
above example, the a in the initialisation expression actually refers to the just declared variable
a, not a possibly earlier declared variable a. As a consequence, the value of a on the right hand
side is undefined no matter what, and hence the attempt to actually initialise it fails as the value
of the initialisation expression is again undefined. This is the case regardless of whether or not an
outer declaration of a variable named a exists (e.g. as a global variable) and whether or not that
has a defined value. Unfortunately, this is a rather subtle bug in practice as C does not rule out
undefined values, they may just differ between program runs.

In the spirit of the name Civilised C we decided for a different definition of scopes that treats
both examples above in the same way. More precisely, the initialisation expression of a variable
declaration is not in the scope of the declared variable. Technically, a compiler would always first
traverse the initialisation expression in the existing scope before creating a new variable a and
updating the current scope accordingly.

Scoping rules for functions are somewhat different from those for variables. Firstly, CiviC syn-
tactically distinguishes between functions and variables and their scopes are clearly separated. In
other words, a function definition never shadows a variable declaration and vice versa.

Unlike in C, all function definitions are visible and thus callable from all other function definitions
(on the same level, see extension 1 below). The textual order in which functions are defined does
not matter. As a consequence, so-called forward declarations as in C and many other imperative
languages are obsolete, and function definitions can be mutually recursive without restrictions.

Why are does the textual order matter for variable declarations but not for function definitions?

The main motivation for this choice is that mutual recursion between functions is very useful, see
the following text book example:

bool odd(int x)

{

int odd;

if (x == 0) odd = false;

else odd = even(x-1);

return odd;

}

bool even(int x)

{

int even;

if (x == 0) even = true;

else even = odd(x-1);

return even;

}

In contrast mutually recursive definition of variables makes little sense as the following example
clearly illustrates:

int a = b+1;

int b = a+1;

That is why we use different scoping rules for functions and variables and emphasise their differ-
ences.

5

6 CiviC Standard Library

In analogy to C, CiviC does not provide any built-in operations to communicate with the execution
environment other than the integer value returned by the main function. CiviC support for separate
compilation opens an avenue to provide support for input and output through a standard library
of functions and global variables. For the time being, assume the availability of the following
6 functions:

extern void printInt(int val);

extern void printFloat(float val);

extern int scanInt();

extern float scanFloat();

extern void printSpaces(int num);

extern void printNewlines(int num);

that write integer and floating point numbers to the standard output stream, read them from the
standard input stream or write a given number of space or newline characters to the standard
output, respectively. In conjunction they allow you to do simple numerical input/output and
provide basic formatting capabilities. The above function definitions can be made available to a
CiviC program by including the header file civic.h. Remember that the C preprocessor is used
by the CiviC compiler.

7 Extension 1: Nested Functions

As an extension to the core language CiviC features nested function definitions according to the
extended syntax shown in Fig. 4. With this extension the body of a function may again contain
function definitions, located between the local variable declarations and the statement sequence.
The scope of these local functions is confined to the body of the outer function, hence the name.

FunBody ⇒ [VarDec]* [LocalFunDef]* [Statement]* [Return]

LocalFunDef ⇒ FunHeader { FunBody }

Figure 4: Extended syntax for nested function definitions

Local functions can be called from within the subsequent statement sequence of the parent func-
tion. Local functions defined on the same nesting level can call each other regardless of the textual
order of definitions. This is the same as for the flat sequence of function definitions, as defined
initially. Local functions may call functions defined in any (directly or indirectly) surrounding
scope. In addition to their own parameters and local variables, local functions can access the
parameters as well as the local variables of any parent function. Of course, local functions can
access global variables as well. The two examples in Fig. 5 illustrate the scoping rules for nested
function definitions.

They can be called from within the subsequent statement sequence. The local functions defined
on the same nesting level may call each other regardless of the textual order of definitions. Local
functions may call any function defined in a surrounding scope. In addition to their own parameters
and local variables, local functions can access the parameters as well as the local variables of any
surrounding function. Of course, local functions can also access global variables. The two examples
in Fig. 5 illustrate the scoping rules of nested function definitions.

6

void foo()

{

void bar()

{

baz (); // OK, no forward declaration needed

}

void baz()

{

bar ();

}

}

--

void foo()

{

void bar()

{

baz(); // OK , baz within scope

}

}

void baz()

{

bar (); // error: bar not visible outside of foo

}

Figure 5: Example code illustrating the scopes of function definitions

8 Extension 2: Multi-dimensional Arrays

The scalar core of CiviC shall be extended by multi-dimensional arrays. Fig. 6 shows the syntactic
extensions. Arrays can be passed as arguments to functions. Parameter passing for arrays is always
call-by-reference. Like in C arrays are indexed from 0 to n-1. Arrays can be multidimensional and
always carry their extents along each dimension with them. For example, supposed a function has
a parameter int[m,n] x, then this denotes an integer m × n-matrix, and the extents m and n,
which (implicitly) are of type int, can be used in the function body as ordinary parameters. CiviC
arrays always have one of the basic types as element types, i.e. there is no support for arrays of
arrays.

CiviC supports multidimensional indexing into arrays both in expression positions as well as in
assignment statements. The number of integers used for indexing must exactly conform with the
number of dimensions in the declaration of the array. Index expressions must be of type int.

The square bracket notation is convenient to define array-valued expressions and to initialise
reasonably small arrays with little syntactic overhead. If the array defined using this notation
has fewer elements than the declaration of the array it is assigned to suggests, some elements of
that array remain uninitialised. If the number of expressions within square brackets exceeds the
declared size of an array, this is a program error.

Multidimensional arrays must be initialised by a corresponding nesting of square bracket expres-
sions, i.e. an array declared to be 2-dimensional can only be initialised by a 2-dimensional array
value. Alternatively, an array of any number of dimensions can be assigned a scalar value. In
this case, all elements of the array are uniformly set to that value. The obvious extension that
supports the initialisation of a multi-dimensional array by an array value of lower dimensionality
through replication along the outer dimensions is not required, but could be taken as a challenge.

Note that array values are only permitted in the initialisation expressions of variable declarations.

7

GlobalDec ⇒ extern Type [[Id [, Id]*]] Id ;

GlobalDef ⇒ [export] Type Id [= Expr] ;
| [export] Type [Expr [, Expr]*] Id ;

Param ⇒ Type [[Id [, Id]*]] Id

VarDec ⇒ Type [[Expr [, Expr]*]] Id [= ArrExpr] ;

Statement ⇒ ...
| Id [Expr [, Expr]*] = Expr ;

ArrExpr ⇒ [ArrExpr [, ArrExpr]*]
| Expr

Expr ⇒ ...
| Id [Expr [, Expr]*]

Figure 6: Extended syntax for CiviC arrays

Arrays declared in the scope of a function may have dynamic extents computed at runtime.
Memory management for arrays is automatic. They are created (in the heap) as program execution
reaches their declaration and their life time is determined by the scoping rules. Arrays cannot be
returned by functions.

Note the following difference in the syntax of array types depending on whether they are used
in global variable declarations and function parameters on the one hand side or global variable
definitions and local variable declarations on the other side. While in the former case array indices
are restricted to identifiers, fully-fledged expressions can be used in the latter case. The motivation
for this distinction is as follows. Both global variable definitions and local variable declarations
define an array object. Hence, we need to specify the shape of that array properly. Fully-fledged
expressions in index position support even computations based on the shapes of existing arrays
and other values. Variables occurring in these index expressions are accessed reading. In contrast,
both global variable declarations and function parameters refer to an object that has been declared
before. Hence, the index variables provide access to the shape properties of the array within the
current context.These index variables are written to.

9 The Role of Extensions

Extensions are optional for passing the course, but they do affect your grade.

We strongly suggest to only start working on one or both extensions once you have successfully
accomplished the same compilation step for the language core. If you struggle, do not waste time
on extensions.

As an illustration: building a complete compiler for the core language that generates correct code
for the CiviC virtual machine will let you pass the course. In contrast, an incomplete compiler
that accepts programs including all extensions, but fails to generate correct VM code even for the
core language, will not let you succeed.

8

