University of Amsterdam Compilerbouw
System and Network Engineering Lab 2014/2015
Dr Clemens Grelck February 9, 2015

CiviC Compiler Project Milestones

Mile Stone 1: Lexicographic Analysis

Extend the lex-based scanner coming with the compiler framework towards a fully-fledged lexico-
graphic analysis for the full range of the CiviC language.

Due date: February 13, 2015

Mile Stone 2: Intermediate Representation

Refine your intermediate representation (abstract syntax tree) for your CiviC compiler reflecting
upon the discussions during the labs. Extend it to cover the entire language including extensions.
If you need further attribute types, provide their implementation alongside (types.h).

Note that a good intermediate representation does not necessarily follow the grammar that defines
the source language one-to-one. A context-free grammar is not a unique description of a language,
and thus many different context-free grammars would define the same language. The style in
which a grammar is defined could be motivated by reasons that do not apply to intermediate
representations of compilers. For example, the grammar used to define the syntax of CiviC is fairly
verbose and uses various levels of non-terminal symbols merely for the purpose of documenting
the various language features.

A good intermediate representation liberates itself from the concrete syntax definition of a language
and aims at being both concise and handy throughout compilation.

Due date: February 17, 2015

Mile Stone 3: Visualisation of Intermediate Representation

Extend the existing compiler traversal that prints the intermediate representation of a CiviC pro-
gram to cover the full syntactic range of the CiviC language.

Ensure suitable indentation and formatting to properly illustrate the logical structure of the code.

Due date: February 20, 2015

Mile Stone 4: Syntactic Analysis

Extend the yacc-based parser (syntactic analysis) coming with the compiler construction framework
to cover the full syntactic range of the CiviC language. The parser implementation shall create an
abstract syntax tree according to your specification of mile stone 2 in case the program is found
to be well-formed. Otherwise, the parser shall produce a meaningful error message that allows the
programmer to relate the error back to the original source code.

Make sure that your parser is free of shift/reduce and reduce/reduce conflicts.

The production/derivation rules in the parser do not necessarily have to follow the specification
of the context-free grammar as used to define the source language proper. The same reasons
as brought forward under mile stone 2 for the definition of an intermediate representation apply.



Notwithstanding, the parser grammar must implement the exact same language as described by
the specification.

Test your scanner/parser in conjunction with the visualisation facilities developed for mile stone 3
using the example CiviC programs developed in the beginning of the course as well as those
provided as a test suite.

Due date: February 27, 2015

Mile Stone 5: Context Analysis

During context analysis applied occurrences of identifiers, i.e. variables in expressions, left hand
side variables in assignment statements and function names in function calls, are associated with
their corresponding definition or declaration according to the scoping rules of the CiviC language.
A proper error message must be produced if the necessary declaration of a used identifier is missing
(no matching declaration/definition) or is ambiguous (multiple matching declarations/definitions).
Likewise argument numbers in function calls must match parameter numbers of called function.

Note that matching types is not done during context analysis but left for a separate type checking
pass.

The compilation process shall as far as possible continue in the presence of context errors in order
to report multiple such errors in a single compiler run. However, stop compilation after context
analysis in case errors have occurred.

In addition to ruling out context errors an important aspect of context checking is to enhance the
intermediate representation such that future compiler passes can easily extract context information,
e.g. types, from variable representations. The aim is to store the findings of context analysis in the
intermediate representation instead of rerunning context analysis itself any time the corresponding
information is needed in subsequent compiler passes.

There are many ways of technically accomplishing context analysis in a compiler intermediate
representation; in the following we describe possible ways.

We suggest to extend each context, i.e. nested function definitions and the global context, by
a symbol table for variables. Despite the name, this symbol table could simply be a list of
symbol table entries, set up of corresponding to be defined AST nodes. Each symbol table entry
would feature the name of the variable as a character string, its type as well as its nesting level
(starting with zero for the global context). Symbol table entries can and should be extended by
all information about the variable gathered during the compilation process.

If defined as above, the symbol table looks very similar to the internal representation of the list
of parameters of a function or the list of local variable declarations. So, why having another
list? From a syntactic point of view a variable in CiviC can be defined in three different ways:
as a local variable, as a function parameter or as a global variable. All three ways typically have
different representations in the compiler's IR while at the same time they hold similar though not
identical information, among others the name of the variable and its declared type. Consequently,
a possible reference from the node representing some variable in an expression to its point of
declaration could potentially target three different AST node types. This is of course possible,
but from experience very unhandy during the further compilation process.

Overcoming this problem, a symbol table entry is in essence nothing but a unique representation of
the common features of all three forms of variable declarations. At this stage of the compilation
the original representations of variables in the abstract syntax tree could be (and should be)
replaced by other representations that instead of holding partial information directly, i.e. mainly
the variable name, have a reference (“link”) to the corresponding symbol table entry.

Make sure that your compiler appropriately prints the symbol table, for instance as a structured
comment in the beginning of the function body or preceding the entire function definition.



In principle, we could apply the same techniques for functions as for variables. This would in par-
ticular be recommended if your abstract syntax tree foresees different representations for function
definitions and for (external) function declarations. In this case we would be confronted with the
exact same situation as with variables, namely that a function call could refer to either a function
definition or a function declaration, both having different AST representations.

However, in the (fairly simple) context of CiviC we suggest (but in no way prescribe) a slightly
simpler solution. Externally declared functions could be represented in the very same way as
locally defined functions are, simply by making the function body optional in the intermediate
representation. In this way a single type of AST node could easily be used to represent either
function declarations or function definitions, and function calls could uniformly be equipped with
a reference to the corresponding node representing the called function.

These two different solutions among others demonstrate the range of design choices that is char-
acteristic for compiler construction in general.

Context analysis disambiguates equally named symbols according to the scoping rules of the
language, both variables and functions. For documentation as well as debugging purposes this
disambiguation should also be visualised when displaying the abstract syntax tree after context
analysis. This could, for example, be achieved by consistent renaming of identifiers incorporating
a suitable representation of the scope level into the variable name. Alternatively, you could also
simply print the scope information together with the variable name when visualising the abstract
syntax tree.

Last but not least, remove the declaration part from for-loop induction variables and create
corresponding local variable declarations on the level of the function definition the for-loop is
situated in. Beware of nested for-loops using the same induction variable and occurrences of
identically named variables outside the scope of the corresponding for-loop. Like explained
above, context disambiguation and possibly a systematic renaming of for-loop induction variables
is needed.

Due date: March 4, 2015

Mile Stone 6: Turning Variable Initialisations into Regular Assignments

At least in the case of local and global variables the symbol table could entirely substitute the
original declarations, but as of now either declarations may still feature initialisation expressions.
It is now time to transform them into regular assignments to the corresponding variables.

In the case of local variables the new assignment statements can simply prefix the original sequence
of statements, but for global variables it is a-priori unclear where such initialisation assignments
could be stored. Therefore, the compiler shall create one top-level function named __init in
every compilation unit. In this function the compiler collects all initialisation assignments for
global variables in the order of the syntactic appearance of the global variable declarations in the
original syntactic representation of the program. This __init function will later also be used by
the CiviC-VM.

Another area that requires special attention is the initialisation of arrays. Recall that CiviC supports
two forms of array initialisation: heterogeneous initialisation through possibly nested sequences of
values enclosed in square brackets as well as homogeneous initialisation by a single scalar value.
Replace the former by a sequence of scalar array assignments, and substitute the latter by an
appropriate nesting of for-loops.

Beware that in CiviC the (scalar) initialisation expression may contain a function call and that
function calls may be side-effecting, e.g. by doing any form of input/output or by manipulating
the values of global variables. Make sure that the execution of function calls is not duplicated
by your above transformations and that the original meaning of the code is preserved even under
these circumstances. As an illustration of the problem consider the following CiviC program:



int twos = 0;

int two ()

{
twos = twos + 1;
return 2;

}

void foo ()

{
int[2, two ()] a = two();
printInt ( twos);
printInt ( a1, 11);

}

The correct behaviour in this marginally tricky CiviC example program is to evaluate the function
two () exactly twice. Since it always yields the value 2, the array a is a 2x2-matrix, where each
element is set to 2. Therefore, the two subsequent print statements each print the value 2.

A possible solution for these problems is to transform the above code in a systematic way such
that complex expressions (in particular function calls) in index or arrays initialisation expressions
are removed and substituted by fresh variables introduced by the compiler. The above example,
for instance, could be transformed into the following intermediate representation:

int twos = O0;

int two ()

{
twos = twos + 1;
return 2;

}

void foo ()

{
int tmp_1 = 2;
int tmp_2 = two();
int tmp_3 = two();
int[tmp_1, tmp_2] a = tmp_3;
printInt ( twos);
printInt ( al1l, 11);

}

From here the function foo could further be transformed into:

void foo ()
{
int tmp_1;
int tmp_2;
int tmp_3;
int [tmp_1, tmp_2] a;
int tmp_4;
int tmp_5;

tmp_1 = 2;

tmp_2 two () ;

tmp_3 = two();

a = allocate( tmp_1, tmp2);

for (tmp_4 = 0, tmp_1) {
for (tmp_5 = 0, tmp_2) {
altmp_4, tmp_5] = tmp_3;
}
}

printInt ( twos);
printInt( al1l, 11);



Note the changed meaning of the array declaration in line 6. Previously, the array a came into
existence when (symbolically) executing this line of code. Now, it merely represents the fact that
ais a tmp_1xtmp_2 array. Note in particular the introduction of the pseudo function __allocate
in the function body that explicitly allocates heap memory for the array before initialising it with
the specified value.

It is noteworthy that the notations used above, e.g. the allocation pseudo function, are just
examples of a potential textual visualisation of an appropriate intermediate representation. As they
are independent of the source language, you are free to choose any intermediate representation
and any pseudo-syntax for pretty printing that you deem appropriate.

Due date: March 6, 2015

Mile Stone 7: Type Checking

Type checking ensures that operators are applied to arguments of supported types, functions are
called with arguments of correct type as specified by the function definition or declaration and
values of correct type are assigned to variables as defined by the corresponding variable declaration.

Type checking naturally falls into two separate tasks: type inference for expressions and type
matching for assignments and function calls. Type inference infers the type of an expression based
on the declared types of identifiers, the natural types of constants, the typing rules of built-in
operators and type declarations of defined functions. Type matching checks whether inferred
types match declared types, e.g. in assignments to variables, in argument/return positions of
function calls or in predicate positions of control flow constructs. For arrays, type checking
involves additional dimensionality checks. For example, reading from an array and writing to an
array requires exactly as many indices as the array has dimensions.

Non-matching types shall lead to meaningful error messages. The type checker should report
multiple errors before termination.

Type checking takes advantage of the preceding context analysis as declared types of variables
and functions are easily accessible from every occurrence following the reference to the identifier's
declaration. Think about a suitable compiler-internal representation of the type signatures of
built-in operators.

Due date: March 11, 2015

Mile Stone 8: Parameter Passing for Arrays

Arrays can be passed as arguments into functions, as illustrated in the following code example:

void foo( int[m,n] a)
{

bar( a);

baz( a, a);

}

Here, the special type parameters m and n allow us to access the extent of argument array a along
each of the two dimensions within the function bodies of foo() and bar(). At runtime these
properties of arrays must also be passed into functions along with the array itself. A relatively
simple compiler transformation is supposed to turn the above code example into
void foo( int m, int n, int[m,n] a)
{
bar( m, n, a);

baz( m, n, a, m, n, a);

}



where the implicit index arguments of multi-dimensional array parameters become explicit regular
function parameters as well as explicit additional arguments in function calls.

Note in the above example it may be tempting to reduce the number of arguments given to
function baz, but of course this is not possible (at least in the general case) because function baz
may also be called elsewhere in the code with different argument arrays.

Due date: March 13, 2015

Mile Stone 9: Compiling Boolean Operations

In contrast to the language CiviC the virtual machine only has rudimentary support for Boolean
operations. Essentially, the CiviC-VM supports the type Boolean as a built-in type, among others
for predicates of loops and branching constructs, plus three operations: Boolean negation, Boolean
addition (i.e. Boolean disjunction with evaluation of both operands) and Boolean multiplication
(i.e. Boolean conjunction with evaluation of both operands). All other Boolean operations sup-
ported by the source language shall be substituted by semantically equivalent representations
during the compilation process.

For example, the evaluation of standard Boolean conjunction and disjunction in CiviC (and al-
most all other programming languages) significantly differs from that of all other binary operators.
Arithmetic and relational operators first evaluate their left operand expression followed by their
right operand expression and only then perform the operation itself. In contrast, Boolean disjunc-
tion and conjunction operators only evaluate their right operand if following the evaluation of the
left operand the right operand determines the result of the operation. This is often called short
circuit Boolean evaluation.

Another example is the conversion between Boolean values and integer as well as floating point
numbers and vice versa. This is supported by the CiviC language in the form of cast expressions,
but the CiviC-VM only features built-in conversion between integer and floating point numbers.
Furthermore, the CiviC-VM has no built-in support for comparing two Boolean values for equality
or inequality.

The standard compiler approach in this context is to systematically transform all occurrences of
the relevant operations by semantically equivalent branching constructs (if-then-else). However,
experience tells us that this is quite challenging, in particular in the presence of deeply nested
Boolean expressions.

Alternatively, we recommend to extend the intermediate representation of the compiler by con-
ditional expressions as exemplified by the C ternary operator pred?then:else and to system-
atically transform all Boolean operations in question into semantically equivalent conditional ex-
pressions. Conditional expressions may be left until code generation, which turns out to be much
easier.

Due date: March 13, 2015

Mile Stone 10: Array Dimension Reduction

The targeted CiviC-VM only supports flat vectors rather than multi-dimensional arrays as the
CiviC language. This is a common restriction in many programming languages, and only few
languages have full support for truly multi-dimensional arrays.

As a consequence, multi-dimensional CiviC arrays must explicitly be lowered to single-dimensional
arrays. This involves array selection both on the left hand side of assignments as well as in
expression positions, the allocation of arrays and the parameter passing of array arguments. The
following code example, which implements matrix transposition, illustrates this further lowering
step:



void transpose( int m, int n, int[m,n] a)
{

int 1i;

int j;

int[n,m] b;

b = __allocate( n, m)

for (i = 0,n) {
for (j = 0,m) {
bli,jl = alj,il;
}
}

bar( n, m, b);
¥

should be transformed into

void foo( int m, int n, int[] a)
{

int i;

int j;

int[] b;

b = __allocate( n * m)

for (i = 0,n) {
for (j = O0,m) {
bli*m+j] = alj*n+il;
}
}

bar( n, m, b);

}

where int [] represents an integer array type that is stripped off all structural information. With
this final lowering step we do not need (symbolic) shape information for arrays any more as all
relevant uses of shape information have meanwhile been made explicit in the intermediate code.

Think of an efficient index calculation scheme for arrays with more than two dimensions. Have a
look into Horner schemes, for instance.

Due date: March 17, 2015

Mile Stone 11: Assembly Code Generation for Expressions and Statements

Implement a code generator that transforms your internal representation into a flat sequence of
CiviC-VM assembly instructions, pseudo instructions and labels. For this milestone leave out the
function call interface and restrict yourself to the body of the main function.

Due date: March 20, 2015

Mile Stone 12: Assembly Code Generation for the Function Call Protocol

Extend your code generator to support the full function call protocol of the CiviC-VM, but leave
out support for multiple modules.

Intensively test your code generator with the provided CiviC assembler and virtual machine.

Due date: March 24, 2015



Mile Stone 13: Assembly Code Generation for Multi-Module Support

Extend your code generator to support separate compilation of CiviC modules.

Thoroughly test your compiler with your own CiviC programs as well as the test suite provided.

Due date: March 27, 2015

Mile Stone 14: Optimised Assembly Code Generation

Extend your code generator such that it takes advantage of specialised instructions to reduce the
size of the corresponding byte code and to improve program execution times.

Due date: March 27, 2015

Project submission due date: March 29, 2015



