Civilized C Virtual Machine (CiviC-VM)
and
Civilized C Assembler (CiviC-AS)

Reference Manual
Version 0.9

Mike Lankamp Clemens Grelck

University of Amsterdam

Computer Systems Architecture

February 2013

Contents

1 Instruction Set Architecture 5
1.1 Introduction L 5
1.2 Execution Environment 5

1.21 Overview 5
1.2.2 Modules 6
1.2.3 Operands 6
1.3 DataTypes e 6
1.4 Instruction Set Reference 7
1.4.1 |Interpreting the reference pages. 7
1.4.2 Arithmetic instructions 8
1.4.3 Comparison instructions 10
1.4.4 Control flow instructions 10
1.45 Variables and Constants 12
146 Arrays 15
1.4.7 Type conversion instructions 16
1.4.8 Stack maintenance instructions 16

2 Tool Chain 17

2.1 CiviC Assembler (CiviC-AS) 17
2.1.1 Introduction L 17

2.1.2 Assembly format. 17

2.1.3 Pseudo-instructions 18

2.1.4 Instructions L 19

2.2 CiviC Virtual Machine (CiviC-VM) 20
2.2.1 Order of operation 20

222 TypeSafety 20

2.2.3 Built-in Functions 20

A Opcode Table 22
B Assembly Example 23
CiviC-VM and CiviC-AS Reference Manual v0.9 3

Chapter 1

Instruction Set Architecture

1.1 Introduction

This part of the documents describes the Instruction Set Architecture that CiviC programs will be run
in. It comprises the conceptual execution model and environment and a specification of all instructions.

1.2 Execution Environment

This section describes the execution environment of the virtual machine as seen by assembly-language
programmers. It describes how the CiviC-VM executes instructions and how it stores and manipulates
data. The parts of the execution environment described here include the stack and registers.

1.2.1 Overview

Any program running on the CiviC-VM is given a set of resources for executing programs and for storing
data. These resources make up the execution environment of the CiviC-VM. More precisely, it consists
of three disjoint memories and three registers:

Instruction memory. The instruction memory is a read-only memory that contains the code of a
program after being loaded into the CiviC-VM.

Stack memory. The stack is a contiguous array of values. Conceptually, the stack can be infinitely
long. Most instructions operate on the top elements of the stack, removing them from the top
of the stack and pushing some result back onto the stack. The top of the stack is identified by
the stack pointer register.

Heap memory. The heap memory is a random access memory; it is mainly used to store arrays.

Instruction Pointer register. This register contains the address of the currently executing instruction.
The IP register is comprised of two parts, a module identifier and an offset into that module's
instruction stream. Branches, jumps and subroutine calls modify the offset part of the IP register;
jumps to external subroutines modify the entire register.

Stack pointer register. The stack pointer register points to the top of the stack, more precisely it
points to the next available entry in stack memory.

Frame Pointer register. The frame pointer register points to the beginning of the currently executing
function's current frame and this permits access to the function’s parameters and local variables.

Note that all three registers cannot be directly read or written by programs but are manipulated
by certain instructions. For example, instructions that push or pop values onto or from the stack,

CiviC-VM and CiviC-AS Reference Manual v0.9 5

6 CHAPTER 1. INSTRUCTION SET ARCHITECTURE

respectively, implicitly manipulate the stack pointer register; all instructions manipulate the instruction
pointer register by either advancing it to the next instruction or by adding a certain offset to it in
the case of jump and branch instructions. Last not least, instructions implementing the procedure call
convention implicitly manipulate the frame pointer register.

1.2.2 Modules

A program consists of one or more modules. Each module consists of a

sequence of instructions. The instructions in a module are a byte stream of variable-length instruc-
tions; they are packed one after the other to form a single array of instruction bytes. Each
instruction has either zero, one or two arguments of varying numbers of bytes.

global variable table. The global variable table is an array of values that is created, but left uninitial-
ized, when the module is loaded. Certain instructions can move values between this table and
the stack.

constant table. The constant table is an array of values that is created and initialized when the
module is loaded. Certain instructions can move values from this table onto the stack.

import table. The import table is a list of functions that must be located in different modules.
These imported functions will be connected with exported functions in other modules. Certain
instructions can perform a subroutine jump to an import entry. Executing such an instruction
will result in a subroutine call into a different module. If an import entry could not be found
among other modules when the module is loaded, execution of the program is aborted.

export table. The export table is a list of functions in the current module that should be made
available to other modules for importing.

1.2.3 Operands

Instructions have zero, one or two operands. We distinguish a number of differently typed operands
for a number of different purposes:

e a 1-byte unsigned number;

e a 1l-byte unsigned index into the current frame;

a 2-byte unsigned index into the constant table;

a 2-byte unsigned index into the global table;

a 2-byte unsigned index into the import table;

a 2-byte signed offset on the instruction pointer.

The number and type of operands is unambiguously determined by the instruction itself. Note that
in contrast to register transfer instruction set architectures (both hardware and virtual), the runtime
stack implicitly provides the data that certain instructions operate on.

1.3 Data Types

The CiviC-VM supports four different types:
int. Integer numbers are signed and guaranteed to be at least 32 bits;

float. Floating-point numbers conform to the IEEE 754 standard and are guaranteed to be at least
single precision;

6 CiviC-VM and CiviC-AS Reference Manual v0.9

1.4. INSTRUCTION SET REFERENCE 7

bool. Booleans can only have two values: 'true’ or 'false’;

array references. Arrays are inherently one-dimensional; the element type is either int, float or bool;
There is no support for nested arrays in the CiviC-VM.

For safety, all items in tables, on the stack and in arrays are typed during initialization. This type can
never be changed. Instructions that deal in reading or writing these values come in different shapes,
depending on the type of the data that is operated on. For instance, the iadd instruction adds two
integer values, while the fadd instruction adds two floating-point values, etc.

In case of a mismatch between the operand types expected by some instructions and the types of the
values found on the stack, in the heap, in the constant pool or in the global frame, the CiviC-VM
aborts with an appropriate error message.

1.4 Instruction Set Reference

This section describes the complete CiviC-VM instruction set. The instruction descriptions are grouped
according to their function. Instructions consist of one primary opcode byte and, depending on the
instruction, one or more 8-bit or 16-bit operands. For each instruction, the opcode is given, as well as
the required operands and a description of each.

1.4.1 Interpreting the reference pages

This section describes the information contained in the various sections of the following instruction
reference pages. It also explains the notational conventions and abbreviations used in them.

Opcode column

The “Opcode” column gives the 8-bit opcode for the instruction. The opcode is given in hexadecimal
representation.

Instruction column

The “Instruction” column gives the syntax of the instruction statement as it would appear in an
assembly program. The following is a list of symbols used to represent operands in the instruction
statements:

e A—An unsigned 8-bit count of the number of arguments that a subroutine takes.
e [—An unsigned 8-bit offset into the current frame for access to a parameter or local variable.

e D—An unsigned 8-bit dimensionality index or size. Operands of this type are used to specify the
number of dimensions of an array or to index into one dimension of an array.

e N—An unsigned 8-bit static link counter. Instructions take an operand of this type can refer to
frames other than their own. This operand will identify how many (lexical) frames to skip past.

e C—An unsigned 16-bit index into the module’s constant table.
e G—An unsigned 16-bit index into the module’s global table.
e /—An unsigned 16-bit index into the module's import table.

e O—A signed 16-bit offset relative to the instruction's PC.

Description column

The "Description” column briefly explains the various forms of the instruction. The following “De-
scription” section contains more information.

CiviC-VM and CiviC-AS Reference Manual v0.9 7

8 CHAPTER 1. INSTRUCTION SET ARCHITECTURE

Description

The "Description” section describes the purpose of the instructions and the required operands.

1.4.2 Arithmetic instructions

Addition

Opcode Instruction Description

00 iadd Add two integer numbers

20 fadd Add two floating-point numbers
Description

Pops two values from the top of the stack, adds them and pushes the result onto the stack. iadd pops
and pushes integer values. fadd pops and pushes floating point values.

Subtraction

Opcode Instruction Description

01 isub Subtract two integer numbers

21 fsub Subtract two floating-point numbers
Description

Pops two values from the top of the stack, subtracts the first popped value from the second popped
value and pushes the result onto the stack. isub pops and pushes integer values. fsub pops and
pushes floating point values.

Multiplication

Opcode Instruction Description

02 imul Multiply two integer numbers

22 fmul Multiply two floating-point numbers
Description

Pops two values from the top of the stack, multiplies them and pushes the result onto the stack. imul
pops and pushes integer values. fmul pops and pushes floating point values.

Division

Opcode Instruction Description

03 idiv Divide two integer numbers

23 fdiv Divide two floating-point numbers
Description

Pops two values from the top of the stack, divides the second popped value by the first popped value
and pushes the result onto the stack. idiv pops and pushes integer values. fdiv pops and pushes
floating point values.

8 CiviC-VM and CiviC-AS Reference Manual v0.9

1.4. INSTRUCTION SET REFERENCE 9

Remainder

Opcode Instruction Description
04 irem Calculate remainder of integer division of two integer numbers

Description

Pops two values from the top of the stack, divides the second popped value by the first popped value
(i.e., the values are popped right-to-left) and pushes the remainder onto the stack. irem pops and
pushes integer values.

Negation
Opcode Instruction Description
05 ineg Negate integer
25 fneg Negate floating-point
45 bnot Negate boolean
Description

Pops a value from the top of the stack, negates it and pushes the result onto the stack. ineg pops
and pushes integer values. fneg pops and pushes floating point values. bnot pops and pushes boolean
values.

Increment / Decrement

Opcode Instruction Description

60 iinc L C Increment local by constant

61 iinc_1 L Increment local by one

62 idec L C Decrement local by constant

63 idec_1 L Decrement local by one
Description

Increments or decrements the local variable identified by L with the value loaded from the constant
table at index C. iinc and idec increment and decrement, respectively. iinc_1 and idec_1 increment
and decrement by 1, and do not take the constant table index C. All instructions operate on integer
local variables. The stack is not modified.

CiviC-VM and CiviC-AS Reference Manual v0.9 9

10 CHAPTER 1. INSTRUCTION SET ARCHITECTURE

1.4.3 Comparison instructions

Relational Operations

Opcode Instruction Description

08 ine Test if not equal

09 ieq Test if equal

0A ilt Test if less

0B ile Test if less or equal

0C igt Test if greater

0D ige Test if greater or equal

28 fne Test if not equal

29 feq Test if equal

2A flt Test if less

2B fle Test if less or equal

2C fgt Test if greater

2D fge Test if greater or equal

48 bne Test if not equal

49 beq Test if equal
Description

These instructions pop two values off the top of the stack, compare them, and push the boolean result
onto the stack. The i??7 instructions pop two integer values, the £77 instructions pop two floating-
point values and the b?? instructions pop two boolean values. The values are popped right-to-left
(i.e., the first popped value is on the right side of the comparison).

1.4.4 Control flow instructions

Initiate Subroutine call

Opcode Instruction Description
68 isr Initiate call to subroutine in current scope
69 isrn N Initiate call to subroutine in outer scope
6A isrl Initiate call to subroutine local to current scope
6B isrg Initiate call to global subroutine
Description

These instructions push an activation record onto the stack which will be finalized by the jsr or jsre
instructions. isr pushes an activation record for a call to a subroutine which is at the same nesting
level as the currently executing subroutine. isrn pushes an activation record for a call to a subroutine
which is at a higher nesting level than the currently executing subroutine. N specifies the number of
nesting levels that the target subroutine is higher at. N must be greater than 0 and less than the
nesting depth of the currently executing subroutine. isrl pushes an activation record for a call to
a subroutine which is nested level directly below the currently executing subroutine (i.e., the nesting
depth difference is exactly 1). isrg pushes an activation record for a call to a subroutine which is at
the global level (i.e., a call to a subroutine which is not nested).

Each of these instructions must be paired with a jsr or jsre instruction. The number of values pushed
onto the stack in between this instruction and the jsr or jsre must be exactly equal to the amount
of arguments that the target subroutine expects.

10 CiviC-VM and CiviC-AS Reference Manual v0.9

1.4. INSTRUCTION SET REFERENCE 11

Jump to Subroutine

Opcode Instruction Description

6D jsrAO Jump to subroutine

6E jsre | Jump to external subroutine
Description

Writes the program counter of the next instruction into the activation record pushed onto the stack by
the preceding isr, isrn, isrg or isrl instruction. The activation record must be directly preceding
the arguments on the stack. The number of arguments on the stack is taken from A in the jsr
instruction, or from the import entry in case of a jsre instruction.

jsr calls a subroutine in the same module; the location of this subroutine is pc + O, where pc is the
program counter before executing the instruction and O is the signed integer offset taken from the
instruction.

jsre calls a subroutine in another (or possibly the same) module. The location of the subroutine is
an entry in the import table, at index /. Upon loading the various modules, the virtual machine will
resolve all imports such that jsre will work.

Enter Subroutine

Opcode Instruction Description
6C esr L Enter subroutine

Description

Advances the top of the stack with L elements, thus reserving space for L local variables.
esr should be issued at the beginning of a subroutine, thus ensuring that the locals and arguments are
contiguous in the stack, i.e., the first argument is addressable as local 0, and so on.

Return from Subroutine

Opcode Instruction Description

OF ireturn Return integer number from subroutine

2F freturn Return floating-point number from subroutine

4F breturn Return boolean value from subroutine

6F return Return from subroutine without function value
Description

Restores the stack top to the current subroutine's activation record, set the current program counter
to the return address in the activation record and pops the activation record. ireturn, freturn and
breturn additionally pop an integer, floating-point or boolean value off the top of the stack at the
beginning, and push that value onto the stack at the end.

CiviC-VM and CiviC-AS Reference Manual v0.9 11

12 CHAPTER 1. INSTRUCTION SET ARCHITECTURE

Jumps and Branches

Opcode Instruction Description

64 jump O Jump by offset

65 branch.t O Branch by offset if true

66 branch.f O Branch by offset if false
Description

These instructions either (unconditionally) jump or conditionally branch to pc + O, where pc is the
current value of the instruction pointer register (i.e., the old program counter, before executing the
instruction), and O is the signed integer offset in the instruction.

jump jumps to pc + O, i.e. it resets the instruction pointer register to pc + O branch_t and branch_f
pop a boolean value from the top of the stack and branch if and only if that value is true or false,
respectively. Otherwise, they continue with the next instruction in sequence.

1.4.5 Variables and Constants

Load Local Variable

Opcode Instruction Description

18 iload L Load local integer

10 iload_0 Load local integer #0

11 iload_1 Load local integer #1

12 iload_2 Load local integer #2

13 iload_3 Load local integer #3

38 fload L Load local floating-point

30 fload_0 Load local floating-point #0

31 fload_1 Load local floating-point #1

32 fload_2 Load local floating-point #2

33 fload_3 Load local floating-point #3

58 bload L Load local boolean

50 bload_0 Load local boolean #0

51 bload_1 Load local boolean #1

52 bload_2 Load local boolean #2

53 bload_3 Load local boolean #3

78 aload L Load local array reference

70 aload_0 Load local array reference #0

71 aload_1 Load local array reference #1

72 aload_2 Load local array reference #2

73 aload_3 Load local array reference #3
Description

Reads a local variable and pushes its value onto the stack. iload, fload, bload and aload load
a local integer, floating-point, boolean or array reference variable at index L, respectively. L indexes
the current frame in such a manner that the first argument to the current subroutine is 0, and so on.
Additional local space can be allocated behind the arguments with the esr instruction at the beginning
of the subroutine.

The other instructions are short-hand notation. The number in their name indicates the value of L
that they load.

12 CiviC-VM and CiviC-AS Reference Manual v0.9

1.4. INSTRUCTION SET REFERENCE 13

Load Relatively Free Variable

Opcode Instruction Description

19 iloadn N L Load local integer from higher frame

39 floadn N L Load local floating-point from higher frame

59 bloadn N L Load local boolean from higher frame

79 aloadn N L Load local array reference from outer frame
Description

Reads a local variable from a higher frame and pushes its value onto the stack. iloadn, floadn,
bloadn and aloadn load an local integer, floating-point, boolean or array reference variable at index
L in the frame that is NV levels higher, respectively. N must be greater than 0 and less than the nesting
depth of the currently executing subroutine.

Load Global Variable

Opcode Instruction Description

1A iloadg G Load integer from global table

3A floadg G Load floating-point from global table

5A bloadg G Load boolean from global table

TA aloadg G Load array reference from global table
Description

Loads a value from the module’s global table at index G and pushes it onto the stack. iloadg, floadg,
bloadg and aloadg load and push an integer, floating-point, boolean and array reference, respectively.
G must be a valid index into the module’s global table.

Load Constant

Opcode Instruction Description
17 iloadc C Load integer constant from constant table
37 floadc C Load floating-point constant from constant table
57 bloadc C Load boolean constant from constant table
14 iloadc_0 Load 0
34 floadc_0 Load 0.0
54 bloadc_t Load true
15 iloadc_1 Load 1
35 floadc_1 Load 1.0
55 bloadc_f Load false
16 iloadc_m1 Load -1
Description

Push a constant value onto the stack. iloadc, floadc and bloadc load the constant value from
the constant table, at index C. The other instructions push the following values as indicated in their
description.

CiviC-VM and CiviC-AS Reference Manual v0.9 13

14 CHAPTER 1. INSTRUCTION SET ARCHITECTURE

Store Local Variable

Opcode Instruction Description

1C istore L Store local integer number

3C fstore L Store local floating-point number

5C bstore L Store local boolean value

7C astore L Store local array reference
Description

Pops a value from the stack and stores it into a local variable. istore, fstore, bstore and astore
store an integer, floating-point, boolean or array reference into the local variable at index L, respectively.
L indexes the current frame in such a manner that the first argument to the current subroutine is 0,
and so on. Additional local space can be allocated behind the arguments with the esr instruction at
the beginning of the subroutine.

Store Relatively Free Variable

Opcode Instruction Description

1D istoren N L Store local integer in higher frame

3D fstoren N L Store local floating-point in higher frame

5D bstoren N L Store local boolean in higher frame
Description

Pops a value from the stack and stores it into a local variable. istoren, fstoren and bstoren store
an integer, floating-point, boolean or array reference into the local variable at index L in the frame
that is N levels higher, respectively. N must be greater than 0 and less than the nesting depth of the
currently executing subroutine.

Store Global Variable

Opcode Instruction Description

1E istoreg G Store integer in global table

3E fstoreg G Store floating-point in global table

5E bstoreg G Store boolean in global table

TE astoreg G Store array reference in global table
Description

Pops a value from the stack and stores it into the module's global table at index G. istoreg, fstoreg,
bstoreg, astoreg pop and store an integer, floating-point, boolean and array reference, respectively.
G must be a valid index into the module’s global table.

14 CiviC-VM and CiviC-AS Reference Manual v0.9

1.4. INSTRUCTION SET REFERENCE 15

1.4.6 Arrays

Array Creation

Opcode Instruction Description

06 inewa Create new integer array

26 fnewa Create new floating-point array

46 bnewa Create new boolean array
Description

inewa, fnewa and bnewa create a new (one-dimensional) array of integer, floating-point or boolean
values, respectively. These instructions pop an integer value off the top of the stack (the array size to
allocate), and push a reference to the created array onto the stack.

Read Element from Array

Opcode Instruction Description

1B iloada Read integer from array

3B floada Read floating point from array

5B bloada Read boolean from array
Description

Pops an array reference off the top of the stack. Then pops an integer off the top of the stack, which is
used to index the array. Then, iloada, floada, bloada take the indexed array integer, floating-point
or boolean element, respectively, and push it on top of the stack.

Write Element to Array

Opcode Instruction Description

1F istorea Write integer into array

3F fstorea Write floating-point into array

5F bstorea Write boolean into array
Description

Pops an array reference off the top of the stack. Then pops an integer off the top of the stack, which
is used to index the array in order of popping them off the stack. Then, istorea, fstorea, bstorea
pop an integer, floating-point or boolean value off the top of the stack and store that in the indexed
array element.

The type of the array must match the type of the value popped off the stack.

CiviC-VM and CiviC-AS Reference Manual v0.9 15

16 CHAPTER 1. INSTRUCTION SET ARCHITECTURE

1.4.7 Type conversion instructions

Type Conversion

Opcode Instruction Description

OE i2f Convert integer to floating-point

2E f2i Convert floating-point to integer
Description

i2f pops an integer value from the top of the stack, converts it to a floating-point value (possibly
losing accuracy in the lesser-significant digits) and pushes the resulting floating-point value onto the
stack. f2i pops a floating point value from the top of the stack, converts it to an integer value
(possibly truncating or rounding the value) and pushes the resulting integer value onto the stack.

1.4.8 Stack maintenance instructions

Pop
Opcode Instruction Description
07 ipop Pop integer number from top of stack
27 fpop Pop floating-point number from top of stack
47 bpop Pop boolean value from top of stack
Description

ipop, fpop and bpop pop an integer number, floating-point number and boolean value off the top
of the stack, respectively. The popped value is discarded. These instructions are useful whenever the
returned value of some function is not bound to a variable in the calling context, i.e. despite the fact
that a function does return a value (and the callee will leave that value on the runtime stack upon
completion) the calling context is not interested into the function’s result value, which in this case
needs to be popped from the top of the runtime stack after control has returned to the caller.

16 CiviC-VM and CiviC-AS Reference Manual v0.9

Chapter 2

Tool Chain

2.1 CiviC Assembler (CiviC-AS)

2.1.1 Introduction

The Civilized Assembler CiviC-AS constructs an executable module from an assembly input file consist-
ing of pseudo instructions and the instructions described in chapter 1. This chapter of this document
describes the format of the assembly file and how its contents affects the generated module file.
Appendix B lists an example assembly file.

2.1.2 Assembly format

An assembly file consists of zero or more statements, separated by newlines. A statement is either
an instruction, label definition or pseudo-instruction. Comments exist only as single-line comments;
everything after a semicolon (;) on a line is ignored. Empty lines (after comments removal) are ignored.
The assembler parses the file line-by-line.

Types

In certain pseudo-instructions, it is necessary to specify types of variables or parameters. The following
types are supported:

Type = BasicType

| ArrayType
BasicType = int

| float

| bool
ArrayType = BasicType [,*]
RetType = BasicType

| void

In other words, there are the three basic types of integer, floating point and boolean, and a multi-
dimensional array type. The latter is specified by adding [] after the array’s basic type. Multiple
commas (,) can be specified between the brackets to identify the dimensionality of the array. 0
commas specify a one-dimensional array, 1 comma specifies a two-dimensional array, and so on.
Finally, a return type exists which can be any of the basic types, and void.

Function signatures

In some pseudo-instructions, a function signature must be specified. A function signature consists of
a quote-delimited string identifying the name, a return type, and a list of parameter types:

CiviC-VM and CiviC-AS Reference Manual v0.9 17

18 CHAPTER 2. TOOL CHAIN

FunctionSignature = Name RetType Type*
Name = " [any non-quote, non-newline character]* "

Labels

Labels identify offset in the code by name, absolving the programmer or compiler from having to cal-
culate offset manually. Labels are defined on their own line and exist of a token, followed by a colon (:):

Label = token :

A label is used by referring to its name in any (pseudo-) instruction that expects a label:

LabelRef = token
| integer

Note that, as the grammar indicates, direct offsets in the form of (signed) integer values can be used
instead of label references as well. Note that, since labels can be numbers, a label reference is first
tried to be located as an actual. Only if that fails, it is interpreted as an offset.

2.1.3 Pseudo-instructions

Pseudo instruction: .export

Format:
.export FunctionSignature Label

Description

The .export pseudo-instruction defines an entry in the module’s export table which consists of a
function signature and an offset in the module to the first instruction of the exported function.

For instance, the following export definition:

.export foo void int[,] _foo

defines an export entry named “foo" that exports a function that takes a two-dimensional array of
integers and returns nothing (void). The offset in the code of the function is defined by label _foo.

Pseudo instruction: .import

Format:
.import FunctionSignature

Description

The .import pseudo-instruction defines an entry in the module's import table which consists of a
function signature.

For instance, the following import definition:

.import foo void int[,]

defines an import entry that should, at load-time, be linked up with an external definition of a function
named “foo” that takes a two-dimensional of integers and returns nothing (void). Certain instructions
can refer to this import entry by index to refer to externally defined functions.

18 CiviC-VM and CiviC-AS Reference Manual v0.9

2.1. CIVIC ASSEMBLER (CIVIC-AS) 19

Pseudo instruction: .const

Format:
.const BasicType value

Description

The .const pseudo-instruction defines an entry in the module’s constants table which consists of a
type and value. The type can be an integer, floating-point or boolean type and the value is parsed
accordingly. Integers and floating-point values are parsed similar to C. Boolean values must be true
or false.

Certain instructions can refer to entries in the constants table by index.

Pseudo instruction: .global

Format:
.global Type

Description

The .global pseudo-instruction defines an entry in the module's global table, which is defined by
a type. Both basic types (integer, floating point and boolean) as well as array types can be used
here. The global table is a table of typed, but uninitialized entries that can be read and written by
instructions by index.

2.1.4 Instructions

If a line does not contain a label definition or pseudo-instruction, it is interpreted as in instruction. The
first token should be the name of an instruction from chapter 1. The rest of the tokens on the line are
interpreted as the arguments to the instruction.

All instructions in an assembly file are assembled into a sequence of bytes and appended (without
padding) in the order in which they occur in the file into a stream of bytes which defines the module's
executable code. Offsets in the global table are offsets from the beginning of this byte stream.

CiviC-VM and CiviC-AS Reference Manual v0.9 19

20 CHAPTER 2. TOOL CHAIN

2.2 CiviC Virtual Machine (CiviC-VM)

The Civilized Virtual Machine CiviC-VM loads one or more module files as produced by the Civilized
Assembler CiviC-AS and executes them.

2.2.1 Order of operation

Specifically, the CiviC-VM performs the following steps:

1. Load and verify all specified module files. This step involves parsing the module binary files,
ensuring the input is valid and loading all elements into memory.

2. Initialize the global table in each module. The global table from the binary is used to setup the
type information for the module's global value table. Note that the values themselves remain
uninitialized.

3. Patch imports in each module. For every import entry, the CiviC-VM will look through all other
modules, and built-in functions for a match on the function signature and connect the import
entry to that found function. If a match cannot be found, the CiviC-VM will return an error.

4. Execute every module’s __init function, if any. The __init function can be used to initialize
globals and do other setup before main. Note that this function is not required in a module.

5. Find and execute main.

6. Return the return value from main as exit code.

2.2.2 Type Safety

Since the ISA contains typed instructions, the CiviC-VM verifies the type safety of instructions by
ensuring that the data they operate on is of the correct type, as indicated by the instruction. If this
is not the case, the CiviC-VM will abort execution with an error message indicating which instruction
caused the invalid access.

2.2.3 Built-in Functions

The CiviC-VM defines several built-in functions that can be used as existing exported function by
adding the appropriate import entry in a module. The functions are:

Built-in function: printint
Signature:

void printInt(int i);
Description

The printInt function prints the signed integer argument to standard out in base 10, followed by a
newline. The number is prefixed with a minus sign if the value is negative.

20 CiviC-VM and CiviC-AS Reference Manual v0.9

2.2. CIVIC VIRTUAL MACHINE (CIVIC-VM) 21

Built-in function: printFloat
Signature:
void printFloat(float i);
Description

The printFloat function prints the floating point value to standard out in base 10, decimal notation,
with default precision, followed by a newline. The number is prefixed with a minus sign if the value is
negative.

Built-in function: scanint
Signature:

int scanInt();
Description

The scanInt prompts the user to enter an integer value on standard error, then reads the integer value
from the standard input and returns it. If an invalid value was entered, scanInt returns 0.

Built-in function: scanFloat

Signature:
float scanFloat();

Description

The scanFloat prompts the user to enter an floating point value on standard error, then reads the
floating point value from the standard input and returns it. If an invalid value was entered, scanFloat
returns 0.0.

CiviC-VM and CiviC-AS Reference Manual v0.9 21

Appendix A

Opcode Table

0 1 2 3 4 5 6 7
0 | iadd iload.-0 fadd fload 0 bload_0 iinc aload 0
1 | isub iload-1 fsub fload-1 bload-1 iinc_1 aload_1
2 | imul iload. 2 fmul fload. 2 bload_2 idec aload_2
3 | idiv iload_3 fdiv fload-3 bload_3 idec_1 aload_3
4 | irem iloadc_0 floadc_0 bloadc_t jump
5 | ineg iloadc_1 fneg floadc_1 bnot bloadc_f branch_t
6 | inewa iloadc.ml fnewa bnewa branch_f
7 | ipop iloadc fpop floadc bpop bloadc asize
8 | ine iload fne fload bne bload isr aload
9 | ieq iloadn feq floadn beq bloadn isrn aloadn
Al ilt iloadg flt floadg bloadg isrl aloadg
B | ile iloada fle floada bloada isrg
C | igt istore fgt fstore bstore esr astore
D | ige istoren fge fstoren bstoren jsr
E | i2f istoreg f2i fstoreg bstoreg jsre astoreg
F | ireturn istorea freturn fstorea breturn bstorea return

This table shows all instructions ordered by opcode. The table should be read as follows: the columns
represent the high 4 bits of the opcode and the rows represent the low 4 bits of the opcode. For

instance, the instruction fneg has an opcode of 0x25.

22

CiviC-VM and CiviC-AS Reference Manual v0.9

Appendix B

Assembly Example

Listed below is an example assembly file for the following CiviC program:

extern void printInt(int i);
extern int scanInt();

export int main() {
int n = scanInt();
int[n] values;
readValues(values);
printValues(values) ;
return O;

}

void readValues(int[n] v) {
for (int i = 0, n) {
v[i] = scanInt();
}
}

void printValues(int[n] v) {
for (int i = 0, n) {
printInt(v[il);
}

CiviC-VM and CiviC-AS Reference Manual v0.9

23

24

APPENDIX B. ASSEMBLY EXAMPLE

This could be compiled into the following assembly code:

main:

esr 2

isrg

jsre 1

istore 0O

iload_0

inewa 1

astore 1

isrg

aload_1

jsr 1 readValues
isrg

aload_1

jsr 1 printValues
iloadc_0O

ireturn

readValues:

esr 3
aload_O
asize 0O
istore 1
iloadc_0O
istore 2
iload_1
istore 3

iload_2
iload_3
ilt
branch_f 2
isrg
jsre 1
iload_2
aload_O
istorea
iinc_1 2
jump 1

return

printValues:

esr 3
aload_O
asize O
istore 1
iloadc_0O
istore 2
iload_1
istore 3

iload_2

24

CiviC-VM and CiviC-AS Reference Manual v0.9

25

_init:

.import
.import
.export
.export

iload_3
ilt
branch_f 4
isrg
iload_2
aload_O
iloada
jsre O
iinc_1 2
jump 3

return

esr O
return

"printInt" void int

"scanInt" int

"main" int main
"__init" void __init

CiviC-VM and CiviC-AS Reference Manual v0.9

25

	Instruction Set Architecture
	Introduction
	Execution Environment
	Overview
	Modules
	Operands

	Data Types
	Instruction Set Reference
	Interpreting the reference pages
	Arithmetic instructions
	Comparison instructions
	Control flow instructions
	Variables and Constants
	Arrays
	Type conversion instructions
	Stack maintenance instructions

	Tool Chain
	CiviC Assembler (CiviC-AS)
	Introduction
	Assembly format
	Pseudo-instructions
	Instructions

	CiviC Virtual Machine (CiviC-VM)
	Order of operation
	Type Safety
	Built-in Functions

	Opcode Table
	Assembly Example

