Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
P
py-3d-face-reconstruction
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Richard Torenvliet
py-3d-face-reconstruction
Commits
6ae2cffe
Commit
6ae2cffe
authored
May 11, 2016
by
Richard Torenvliet
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Refactored code to keep things a bit more seperate
parent
d63e9150
Changes
10
Show whitespace changes
Inline
Side-by-side
Showing
10 changed files
with
199 additions
and
236 deletions
+199
-236
makefile
makefile
+1
-2
src/aam.py
src/aam.py
+58
-0
src/aam_test.py
src/aam_test.py
+15
-1
src/imm_points.py
src/imm_points.py
+13
-58
src/imm_points_test.py
src/imm_points_test.py
+0
-18
src/main.py
src/main.py
+15
-61
src/pca.py
src/pca.py
+57
-22
src/pca_test.py
src/pca_test.py
+16
-1
src/view/reconstruct.py
src/view/reconstruct.py
+17
-14
src/view/templates/reconstruct.kv
src/view/templates/reconstruct.kv
+7
-59
No files found.
makefile
View file @
6ae2cffe
...
...
@@ -37,5 +37,4 @@ show_reconstruction:
--n_components
6
test
:
py.test
-f
src/
*
_test.py
python
-m
py.test
-f
src/
*
_test.py
src/aam.py
View file @
6ae2cffe
from
matplotlib.tri
import
Triangulation
import
numpy
as
np
import
cv2
import
pca
def
get_mean
(
imm_points
):
...
...
@@ -33,3 +37,57 @@ def get_mean(imm_points):
mean. [[x_mean_0, y_mean_0], ... [x_mean_n, y_mean_n]]
"""
return
np
.
mean
(
imm_points
,
axis
=
0
)
def
get_triangles
(
x_vector
,
y_vector
):
""" perform triangulation between two 2d vectors"""
return
Triangulation
(
x_vector
,
y_vector
).
triangles
def
build_feature_vectors
(
files
,
get_points
,
flattened
=
False
):
"""
Gets the aam points from the files and appends them seperately to one
array.
Args:
files (list): list files
return:
list: list of feature vectors
"""
points
=
get_points
(
files
)
if
flattened
:
points
=
pca
.
flatten_feature_vectors
(
points
)
return
points
def
get_pixel_values
(
image
,
points
):
h
,
w
,
c
=
image
.
shape
points
[:,
0
]
=
points
[:,
0
]
*
w
points
[:,
1
]
=
points
[:,
1
]
*
h
image
=
cv2
.
blur
(
image
,
(
3
,
3
))
hull
=
cv2
.
convexHull
(
points
,
returnPoints
=
True
)
rect
=
cv2
.
boundingRect
(
hull
)
pixels
=
[]
x
,
y
,
w
,
h
=
rect
# pixels = np.zeros((h, w, c), dtype=np.uint8)
for
i
in
np
.
linspace
(
0
,
1
,
num
=
100
):
for
j
in
np
.
linspace
(
0
,
1
,
num
=
100
):
y_loc_g
=
int
(
i
*
h
+
y
)
x_loc_g
=
int
(
j
*
w
+
x
)
y_loc
=
min
(
int
(
i
*
h
),
h
-
1
)
x_loc
=
min
(
int
(
j
*
w
),
w
-
1
)
if
cv2
.
pointPolygonTest
(
hull
,
(
x_loc_g
,
y_loc_g
),
measureDist
=
False
)
>=
0
:
pixels
.
extend
(
image
[
y_loc_g
][
x_loc_g
])
return
np
.
asarray
(
pixels
,
dtype
=
np
.
uint8
),
hull
src/aam_test.py
View file @
6ae2cffe
import
numpy
as
np
from
aam
import
get_mean
from
aam
import
get_mean
,
get_pixel_values
import
imm_points
import
pca
def
test_build_mean_aan
():
...
...
@@ -39,3 +41,15 @@ def test_zero_mean_aan():
)
np
.
testing
.
assert_array_equal
(
zero_mean
,
expected
)
def
test_get_pixel_values
():
asf_file
=
'../data/imm_face_db/40-2m.asf'
imm
=
imm_points
.
IMMPoints
(
filename
=
asf_file
)
points
=
imm
.
get_points
()
image
=
imm
.
get_image
()
pixels
,
hull
=
get_pixel_values
(
image
,
points
)
assert
False
src/imm_points.py
View file @
6ae2cffe
from
matplotlib.tri
import
Triangulation
import
cv2
import
numpy
as
np
import
argparse
import
os
class
IMMPoints
():
...
...
@@ -21,12 +23,16 @@ class IMMPoints():
def
get_points
(
self
):
return
self
.
points
def
get_image
(
self
):
cv2
.
imread
(
self
.
image_file
)
return
cv2
.
imread
(
self
.
image_file
)
def
import_file
(
self
,
filename
):
with
open
(
filename
,
'r'
)
as
f
:
lines
=
f
.
readlines
()
# store the filename we've got
self
.
filename
=
lines
[
-
1
].
strip
()
data
=
lines
[
16
:
74
]
dir_name
=
os
.
path
.
dirname
(
filename
)
self
.
image_file
=
"{}/{}"
.
format
(
dir_name
,
lines
[
-
1
].
strip
())
for
d
in
data
:
self
.
points
.
append
(
d
.
split
()[
2
:
4
])
...
...
@@ -34,7 +40,6 @@ class IMMPoints():
self
.
points
=
np
.
asarray
(
self
.
points
,
dtype
=
'f'
)
def
draw_triangles
(
self
,
img
,
points
):
assert
(
len
(
self
.
points
)
>
0
)
h
,
w
,
c
=
img
.
shape
points
[:,
0
]
=
points
[:,
0
]
*
w
...
...
@@ -63,69 +68,19 @@ class IMMPoints():
assert
(
len
(
self
.
points
)
>
0
)
assert
(
len
(
self
.
filename
)
>
0
)
img
=
cv2
.
imread
(
'data/imm_face_db/'
+
self
.
filename
)
img
=
self
.
get_image
(
)
self
.
draw_triangles
(
img
,
self
.
points
)
def
flatten_feature_vectors
(
data
):
"""
Flattens the feature vectors inside a ndarray
Example:
input:
[
[[1, 2], [3, 4], [5, 6]],
...
[[1, 2], [3, 4], [5, 6]]
]
output:
[
[1, 2, 3, 4, 5, 6],
...
[1, 2, 3, 4, 5, 6]
]
Args:
data (numpy array): array of feature vectors
return:
array: (numpy array): array flattened feature vectors
"""
flattened
=
[]
rows
,
_
,
_
=
data
.
shape
for
i
in
range
(
rows
):
flattened
.
append
(
np
.
ndarray
.
flatten
(
data
[
i
]))
return
np
.
array
(
flattened
)
def
build_feature_vectors
(
files
,
flattened
=
False
):
"""
Gets the aam points from the files and appends them seperately to one
array.
Args:
files (list): list files
return:
list: list of feature vectors
"""
imm_points
=
[]
def
get_imm_landmarks
(
files
):
points
=
[]
for
f
in
files
:
imm
=
IMMPoints
(
filename
=
f
)
imm_points
.
append
(
imm
.
get_points
())
imm_points
=
np
.
array
(
imm_points
)
if
flattened
:
imm_points
=
flatten_feature_vectors
(
imm_points
)
points
.
append
(
imm
.
get_points
())
return
imm_points
return
np
.
asarray
(
points
)
def
add_parser_options
():
...
...
src/imm_points_test.py
View file @
6ae2cffe
import
numpy
as
np
from
imm_points
import
flatten_feature_vectors
def
test_flatten_feature_vectors
():
imm_points
=
np
.
array
([
[[
1
,
2
],
[
2
,
4
]],
[[
2
,
3
],
[
3
,
6
]],
])
expected
=
np
.
array
([
[
1
,
2
,
2
,
4
],
[
2
,
3
,
3
,
6
]
])
result
=
flatten_feature_vectors
(
imm_points
)
np
.
testing
.
assert_array_equal
(
result
,
expected
)
src/main.py
View file @
6ae2cffe
import
copy
import
argparse
import
logging
import
sys
import
cv2
import
numpy
as
np
# local imports
import
pca
from
aam
import
get_mean
from
imm_points
import
IMMPoints
,
build_feature_vectors
,
\
flatten_feature_vectors
import
aam
import
imm_points
as
imm
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
'%(asctime)s %(levelname)s %(name)s: %(message)s'
)
...
...
@@ -20,7 +14,6 @@ logger = logging.getLogger(__name__)
def
add_parser_options
():
parser
=
argparse
.
ArgumentParser
(
description
=
'IMMPoints tool'
)
pca_group
=
parser
.
add_argument_group
(
'show_pca'
)
pca_group
.
add_argument
(
...
...
@@ -63,27 +56,26 @@ def save_pca_model(args):
It is saved in the following way:
np.load(filename, np.assary([
U, s,
Vt, mean_values])
np.load(filename, np.assary([Vt, mean_values])
And accessed by:
Us
Vtm = np.load(args.model_file)
Vtm = np.load(args.model_file)
U = UsVtm[0]
s = UsVtm[1]
Vt = UsVtm[2]
mean_values = UsVtm[3]
Vt = Vtm[0]
mean_values = Vtm[1][0]
"""
assert
args
.
asf
,
'--asf files should be given'
assert
args
.
model_file
,
'--model_file needs to be provided to save the pca model'
imm_points
=
build_feature_vectors
(
args
.
asf
,
flattened
=
True
)
mean_values
=
get_mean
(
imm_points
)
points
=
aam
.
build_feature_vectors
(
args
.
asf
,
imm
.
get_imm_landmarks
,
flattened
=
True
)
mean_values
=
aam
.
get_mean
(
points
)
U
,
s
,
Vt
=
pca
.
pca
(
imm_
points
,
mean_values
)
_
,
_
,
Vt
=
pca
.
pca
(
points
,
mean_values
)
pca
.
save
(
U
,
s
,
Vt
,
mean_values
,
args
.
model_file
)
pca
.
save
(
Vt
,
mean_values
,
args
.
model_file
)
logger
.
info
(
'saved pca model in %s'
,
args
.
model_file
)
...
...
@@ -92,59 +84,21 @@ def show_pca_model(args):
assert
args
.
asf
,
'--asf files should be given to allow the image to be shown'
assert
args
.
model_file
,
'--model_file needs to be provided to get the pca model'
U
,
s
,
Vt
,
mean_values
=
pca
.
load
(
args
.
model_file
)
# init trackbars
# index = 0
# cv2.namedWindow('index')
# cv2.createTrackbar('index', 'index', index, len(args.asf) - 1, trackbarUpdate)
n_components
=
args
.
n_components
view
.
init_eigenvalue_trackbars
(
n_components
,
s
,
window
=
'eigenvalues'
)
# use a copy of s to manipulate so we never touch the original
s_copy
=
copy
.
copy
(
s
)
reconstruction
=
np
.
dot
(
Vt
[:
n_components
],
x
-
mean_values
)
while
True
:
imm
=
IMMPoints
(
filename
=
args
.
asf
[
index
])
reconstruction
=
np
.
dot
(
V
[:
n_components
],
x
-
mean_values
)
# reconstruction = pca.reconstruct(U[index], s_copy, Vt, n_components, mean_values)
# reshape to x, y values
reconstructed
=
reconstruction
.
reshape
((
58
,
2
))
imm
=
IMMPoints
(
points
=
reconstructed
)
img
=
np
.
full
((
480
,
640
,
3
),
255
,
np
.
uint8
)
imm
.
show_on_img
(
img
)
for
i
in
range
(
n_components
):
s_copy
[
i
]
=
s
[
i
]
+
(
(
cv2
.
getTrackbarPos
(
str
(
i
),
'eigenvalues'
)
-
50
)
/
10.0
)
index
=
cv2
.
getTrackbarPos
(
'index'
,
'index'
)
imm
.
show
(
window_name
=
'original'
)
k
=
cv2
.
waitKey
(
1
)
&
0xFF
if
k
==
27
:
break
cv2
.
destroyAllWindows
()
Vt
,
mean_values
=
pca
.
load
(
args
.
model_file
)
def
reconstruct_with_model
(
args
):
assert
args
.
asf
,
'--asf files should be given to allow the image to be shown'
assert
args
.
model_file
,
'--model_file needs to be provided to get the pca model'
# clear args. arguments are conflicting with parseargs
# clear
sys
args. arguments are conflicting with parseargs
# kivy will parse args upon import and will crash if it finds our
# 'unsuported by kivy' arguments.
# 'unsup
p
orted by kivy' arguments.
sys
.
argv
[
1
:]
=
[]
from
view.reconstruct
import
ReconstructApp
U
,
s
,
Vt
,
mean_values
=
pca
.
load
(
args
.
model_file
)
Vt
,
mean_values
=
pca
.
load
(
args
.
model_file
)
ReconstructApp
(
args
=
args
,
eigen_vectors
=
Vt
,
mean_values
=
mean_values
,
).
run
()
...
...
src/pca.py
View file @
6ae2cffe
...
...
@@ -2,6 +2,14 @@ import numpy as np
def
pca
(
data
,
mean_values
):
"""
Perform Singlar Value Decomposition
Returns:
U (ndarray): U matrix
s (ndarray): 1d singular values (diagonal in array form)
Vt (ndarray): Vt matrix
"""
# subtract mean
zero_mean
=
data
-
mean_values
U
,
s
,
Vt
=
np
.
linalg
.
svd
(
zero_mean
,
full_matrices
=
False
)
...
...
@@ -28,24 +36,23 @@ def reconstruct(feature_vector, Vt, mean_values, n_components=10):
return
np
.
dot
(
Vt
[:
n_components
].
T
,
yk
)
+
mean_values
def
save
(
U
,
s
,
Vt
,
mean_values
,
filename
):
def
save
(
Vt
,
mean_values
,
filename
):
"""
Store the U, s, Vt and mean of all the asf datafiles given by the asf
files.
It is stored in the following way:
np.load(filename, np.assary([
U, s, Vt, mean_values
])
np.load(filename, np.assary([
Vt, [mean_values]
])
And accessed by:
Us
Vtm = np.load(args.model_file)
Vtm = np.load(args.model_file)
U = UsVtm[0]
s = UsVtm[1]
Vt = UsVtm[2]
mean_values = UsVtm[3]
Vt = Vtm[0]
mean_values = Vtm[1][0]
"""
np
.
save
(
filename
,
np
.
asarray
([
U
,
s
,
Vt
,
mean_values
]))
saving
=
np
.
asarray
([
Vt
,
[
mean_values
]])
np
.
save
(
filename
,
saving
)
def
load
(
filename
):
...
...
@@ -53,28 +60,56 @@ def load(filename):
The model stored by pca.store (see ``pca.store`` method above) is loaded as:
UsVtm = np.load(args.model_file)
U = UsVtm[0]
s = UsVtm[1]
Vt = UsVtm[2]
mean_values = UsVtm[3]
Vt = Vtm[0]
mean_values = Vtm[1][0]
Returns:
(tuple):
U, s,
Vt, mean_values
(tuple): Vt, mean_values
U (numpy ndarray): One feature vector from the reduced SVD.
U should have shape (n_features,), (i.e., one dimensional)
s (numpy ndarray): The singular values as a one dimensional array
Vt (numpy ndarray): Two dimensional array with dimensions
(n_features, n_features)
mean_values (numpy ndarray): mean values of the features of the model,
this should have dimensions (n_featurs, )
"""
# load the stored model file
UsVtm
=
np
.
load
(
filename
)
Vtm
=
np
.
load
(
filename
)
Vt
=
Vtm
[
0
]
mean_values
=
Vtm
[
1
][
0
]
return
Vt
,
mean_values
def
flatten_feature_vectors
(
data
):
"""
Flattens the feature vectors inside a ndarray
Example:
input:
[
[[1, 2], [3, 4], [5, 6]],
...
[[1, 2], [3, 4], [5, 6]]
]
output:
[
[1, 2, 3, 4, 5, 6],
...
[1, 2, 3, 4, 5, 6]
]
Args:
data (numpy array): array of feature vectors
return:
array: (numpy array): array flattened feature vectors
"""
flattened
=
[]
rows
,
_
,
_
=
data
.
shape
U
=
UsVtm
[
0
]
s
=
UsVtm
[
1
]
Vt
=
UsVtm
[
2
]
mean_values
=
UsVtm
[
3
]
for
i
in
range
(
rows
):
flattened
.
append
(
np
.
ndarray
.
flatten
(
data
[
i
]))
return
U
,
s
,
Vt
,
mean_values
return
np
.
array
(
flattened
)
src/pca_test.py
View file @
6ae2cffe
import
numpy
as
np
from
pca
import
pca
,
reconstruct
from
pca
import
flatten_feature_vectors
def
test_flatten_feature_vectors
():
imm_points
=
np
.
array
([
[[
1
,
2
],
[
2
,
4
]],
[[
2
,
3
],
[
3
,
6
]],
])
expected
=
np
.
array
([
[
1
,
2
,
2
,
4
],
[
2
,
3
,
3
,
6
]
])
result
=
flatten_feature_vectors
(
imm_points
)
np
.
testing
.
assert_array_equal
(
result
,
expected
)
src/view/reconstruct.py
View file @
6ae2cffe
...
...
@@ -2,7 +2,6 @@ import kivy
kivy
.
require
(
'1.0.7'
)
import
numpy
as
np
from
matplotlib.tri
import
Triangulation
from
kivy.app
import
App
from
kivy.uix.boxlayout
import
BoxLayout
...
...
@@ -18,9 +17,11 @@ from kivy.graphics.context_instructions import Color
from
functools
import
partial
from
math
import
cos
,
sin
,
pi
from
imm_points
import
IMMPoints
,
build_feature_vectors
,
\
flatten_feature_vectors
import
imm_points
as
imm
#import IMMPoints, build_feature_vectors, \
# flatten_feature_vectors
import
pca
import
aam
class
ImageCanvas
(
Widget
):
...
...
@@ -34,12 +35,13 @@ class ImageCanvas(Widget):
self
.
image
=
Image
(
pos
=
self
.
pos
,
size
=
self
.
size
,
source
=
self
.
filename_image
)
self
.
mesh
=
Mesh
(
mode
=
'triangle_fan'
)
self
.
triangles
=
InstructionGroup
()
self
.
middle_group
=
InstructionGroup
()
self
.
outline
=
InstructionGroup
()
self
.
bind
(
pos
=
self
.
update_rect
,
size
=
self
.
update_rect
)
def
get_rendered_size
(
self
):
"""get the rendered size of the image
"""
get the rendered size of the image
Returns:
(tuple) width, height in pixels
"""
...
...
@@ -73,7 +75,7 @@ class ImageCanvas(Widget):
self
.
triangles
.
clear
()
image_width
,
image_height
=
self
.
get_rendered_size
()
triangles
=
Triangulation
(
reconstructed
[:,
0
],
reconstructed
[:,
1
]).
triangles
triangles
=
aam
.
get_triangles
(
reconstructed
[:,
0
],
reconstructed
[:,
1
])
for
tri
in
triangles
:
self
.
triangles
.
add
(
Color
(
0
,
0
,
1
,
1
))
...
...
@@ -92,7 +94,6 @@ class ImageCanvas(Widget):
self
.
triangles
.
add
(
Line
(
circle
=
(
x
[
2
],
y
[
2
],
3
)))
self
.
canvas
.
add
(
self
.
triangles
)
self
.
canvas
.
add
(
self
.
middle_group
)
self
.
canvas
.
ask_update
()
def
build_mesh
(
self
,
reconstructed
):
...
...
@@ -109,8 +110,8 @@ class ImageCanvas(Widget):
xy_vertices
=
np
.
array
(
xy_vertices
)
indices
=
[]
indices
=
Triangulation
(
xy_vertices
[:,
0
],
xy_vertices
[:,
1
]).
triangles
indices
=
np
.
ndarray
.
flatten
(
indices
)
[:
30
]
indices
=
aam
.
get_triangles
(
xy_vertices
[:,
0
],
xy_vertices
[:,
1
])
indices
=
np
.
ndarray
.
flatten
(
indices
)
self
.
mesh
.
vertices
=
vertices
self
.
mesh
.
indices
=
indices
...
...
@@ -126,6 +127,7 @@ class RootWidget(BoxLayout):
self
.
n_components
=
kwargs
[
'args'
].
n_components
self
.
multipliers
=
np
.
ones
(
self
.
Vt
.
shape
[
1
])
# slider index
self
.
index
=
0
self
.
filename
=
''
...
...
@@ -137,11 +139,12 @@ class RootWidget(BoxLayout):
n_components_slider
.
value
=
self
.
n_components
n_components_slider
.
bind
(
value
=
self
.
update_n_components
)
self
.
landmark_list
=
build_feature_vectors
(
self
.
images
,
flattened
=
True
)
self
.
ids
[
'image_viewer'
].
bind
(
size
=
self
.
on_resize
)
box_layout
=
self
.
ids
[
'eigenvalues'
]
self
.
landmark_list
=
aam
.
build_feature_vectors
(
self
.
images
,
imm
.
get_imm_landmarks
,
flattened
=
True
)
for
c
in
range
(
self
.
n_components
):
slider
=
Slider
(
min
=-
10
,
max
=
10
,
value
=
0
,
id
=
str
(
c
))
box_layout
.
add_widget
(
slider
)
...
...
@@ -149,7 +152,6 @@ class RootWidget(BoxLayout):
def
reset_sliders
(
self
):
self
.
multipliers
=
np
.
ones
(
self
.
Vt
.
shape
[
1
])
box_layout
=
self
.
ids
[
'eigenvalues'
]
for
c
in
box_layout
.
children
:
...
...
@@ -164,7 +166,7 @@ class RootWidget(BoxLayout):
n_components
=
self
.
n_components
)
reconstruction
=
reconstruction
.
reshape
((
58
,
2
))
reconstruction
=
reconstruction
.
reshape
((
-
1
,
2
))
self
.
ids
[
'image_viewer'
].
update_rect
()
self
.
ids
[
'image_viewer'
].
update_image
(
self
.
filename
)
...
...
@@ -199,7 +201,8 @@ class ReconstructApp(App):
super
(
ReconstructApp
,
self
).
__init__
(
**
kwargs
)
def
build
(
self
):
return
RootWidget
(
args
=
self
.
args
,
eigen_vectors
=
self
.
eigen_vectors
,
return
RootWidget
(
args
=
self
.
args
,
eigen_vectors
=
self
.
eigen_vectors
,
mean_values
=
self
.
mean_values
)
...
...
src/view/templates/reconstruct.kv
View file @
6ae2cffe
<Widget>
canvas.after:
Line:
rectangle: self.x+1,self.y+1,self.width-1,self.height-1
dash_offset: 5
dash_length: 3
# Draw lines between widgets for easy debugging
# <Widget>
# canvas.after:
# Line:
# rectangle: self.x+1,self.y+1,self.width-1,self.height-1
# dash_offset: 5
# dash_length: 3
<ImageCanvas>
Widget
<RootWidget>
BoxLayout:
...
...
@@ -39,55 +39,3 @@
BoxLayout:
orientation: 'vertical'
id: eigenvalues
# size_hint_y: None
# height: sp(100)
# BoxLayout:
# orientation: 'vertical'
# Slider:
# id: e1
# min: -360.
# max: 360.
# Label:
# text: 'angle_start = {}'.format(e1.value)
# BoxLayout:
# orientation: 'vertical'
# Slider:
# id: e2
# min: -360.
# max: 360.
# value: 360
# Label:
# text: 'angle_end = {}'.format(e2.value)
# BoxLayout:
# size_hint_y: None
# height: sp(100)
# BoxLayout:
# orientation: 'vertical'
# Slider:
# id: wm
# min: 0
# max: 2
# value: 1
# Label:
# text: 'Width mult. = {}'.format(wm.value)
# BoxLayout:
# orientation: 'vertical'
# Slider:
# id: hm
# min: 0
# max: 2
# value: 1
# Label:
# text: 'Height mult. = {}'.format(hm.value)
# Button:
# text: 'Reset ratios'
# on_press: wm.value = 1; hm.value = 1
# FloatLayout:
# canvas:
# Color:
# rgb: 1, 1, 1
# Rectangle:
# pos: 100, 100
# size: 200 * wm.value, 201 * hm.value
# source: 'data/imm_face_db/16-2m.jpg'
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment