Commit af201a88 authored by Patrik Huber's avatar Patrik Huber

Initial commit

parents
# Auto detect text files and perform LF normalization
* text=auto
# Explicitly declare text files we want to always be normalized and converted
# to native line endings on checkout.
*.c text
*.cpp text
*.h text
*.hxx text
*.hpp text
# Denote all files that are truly binary and should not be modified.
*.png binary
*.jpg binary
# Standard to msysgit
*.doc diff=astextplain
*.DOC diff=astextplain
*.docx diff=astextplain
*.DOCX diff=astextplain
*.dot diff=astextplain
*.DOT diff=astextplain
*.pdf diff=astextplain
*.PDF diff=astextplain
*.rtf diff=astextplain
*.RTF diff=astextplain
# Ignore the user-specific initial_cache file
initial_cache.cmake
project(eos)
cmake_minimum_required(VERSION 2.8.7)
set(eos_VERSION_MAJOR 0)
set(eos_VERSION_MINOR 1)
set(eos_VERSION_PATCH 0)
# g++ needs a compiler flag to enable C++11 support
include(CheckCXXCompilerFlag)
check_cxx_compiler_flag(-std=c++11 HAS_CXX11_FLAG)
if (HAS_CXX11_FLAG)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
endif()
# All the options for building the library. Can be changed on the command-line or in initial_cache.cmake.
message(STATUS "Options:")
option(BUILD_EXAMPLES "Build the example applications." ON)
message(STATUS "BUILD_EXAMPLES: ${BUILD_EXAMPLES}")
option(BUILD_DOCUMENTATION "Build the library documentation." ON)
message(STATUS "BUILD_DOCUMENTATION: ${BUILD_DOCUMENTATION}")
# Build a CPack driven installer package:
include(InstallRequiredSystemLibraries) # This module will include any runtime libraries that are needed by the project for the current platform
set(CPACK_RESOURCE_FILE_LICENSE "${CMAKE_CURRENT_SOURCE_DIR}/LICENSE")
set(CPACK_PACKAGE_VERSION_MAJOR "${eos_VERSION_MAJOR}")
set(CPACK_PACKAGE_VERSION_MINOR "${eos_VERSION_MINOR}")
set(CPACK_PACKAGE_VERSION_PATCH "${eos_VERSION_PATCH}")
include(CPack)
# Find dependencies:
find_package(OpenCV 2.4.3 REQUIRED core)
message(STATUS "OpenCV include dir found at ${OpenCV_INCLUDE_DIRS}")
message(STATUS "OpenCV lib dir found at ${OpenCV_LIB_DIR}")
find_package(Boost 1.48.0 COMPONENTS system REQUIRED)
if(Boost_FOUND)
message(STATUS "Boost found at ${Boost_INCLUDE_DIRS}")
else(Boost_FOUND)
message(FATAL_ERROR "Boost not found")
endif()
# Source and header files:
set(SOURCES
src/eos/core/LandmarkMapper.cpp
src/eos/morphablemodel/PcaModel.cpp
src/eos/morphablemodel/MorphableModel.cpp
src/eos/morphablemodel/io/cvssp.cpp
src/eos/fitting/AffineCameraEstimation.cpp
src/eos/fitting/LinearShapeFitting.cpp
src/eos/render/Mesh.cpp
src/eos/render/utils.cpp
)
set(HEADERS
include/eos/core/LandmarkMapper.hpp
include/eos/morphablemodel/PcaModel.hpp
include/eos/morphablemodel/MorphableModel.hpp
include/eos/morphablemodel/io/cvssp.hpp
include/eos/fitting/AffineCameraEstimation.hpp
include/eos/fitting/LinearShapeFitting.hpp
include/eos/render/Mesh.hpp
include/eos/render/utils.hpp
)
# Add header includes:
include_directories("include")
include_directories(${Boost_INCLUDE_DIRS})
include_directories(${OpenCV_INCLUDE_DIRS})
# Make the library:
add_library(eos ${SOURCES} ${HEADERS})
target_link_libraries(eos ${OpenCV_LIBS} ${Boost_LIBRARIES})
# The install target:
install(TARGETS eos DESTINATION lib)
install(DIRECTORY ${CMAKE_SOURCE_DIR}/include/ DESTINATION include)
install(DIRECTORY ${CMAKE_SOURCE_DIR}/share/ DESTINATION share)
if(BUILD_EXAMPLES)
add_subdirectory(examples)
endif()
if(BUILD_DOCUMENTATION)
add_subdirectory(doc)
endif()
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
# Eos: A 3D Morphable Model fitting library in modern C++11/14.
Eos is a tiny 3D Morphable Model fitting library that provides just the bare minimum to load a model and perform camera and shape fitting. It's written in modern C++11/14.
At the moment, it mainly provides the following functionality:
* MorphableModel class to represent a 3DMM (using OpenCVs `cv::Mat`)
* Camera estimation, implementation of the _Gold Standard Algorithm_ from Multiple View Geometry, Hartley & Zisserman
* Shape fitting, implementation of the linear shape-to-landmarks fitting of O. Aldrian & W. Smith, Inverse Rendering of Faces with a 3D Morphable Model, PAMI 2013.
## Usage
* Tested with the following compilers: gcc-4.8.2, clang-3.5, Visual Studio 2013
* Needed dependencies: CMake, Boost system filesystem program_options (1.54.0), OpenCV core, imgproc, highgui (2.4.3). Older versions might work as well.
### Build the examples and tests
* copy `initial_cache.cmake.template` to `initial_cache.cmake`, edit the necessary paths
* create a build directory next to the `eos` folder: `mkdir build; cd build`
* `cmake -C ../eos/initial_cache.cmake -G "<your favourite generator>" ../eos -DCMAKE_INSTALL_PREFIX=install/`
* build using your favourite tools, e.g. `make; make install` or open the solution in Visual Studio.
## Sample code
See examples/fit_model.cpp.
## Documentation
The code is fully documented with Doxygen and you can also build the `doc` target.
## License & contributions
This code is licensed under the Apache License, Version 2.0
Contributions are very welcome! (best in the form of pull requests.) Please use Github issues for any bug reports, ideas, and discussions.
If you use this code in your own work, please cite the following paper: _Random Cascaded-Regression Copse for Robust Facial Landmark Detection_, Z. Feng, P. Huber, J. Kittler, W. Christmas, X.J. Wu, IEEE Signal Processing Letters, Vol: 22(1), 2015 (http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6877655).
(_We are working on publishing a paper that more closely resembles this library, and we will replace the previously mentioned paper here with the new one as soon as it is published._)
# - Try to find Eigen3 lib
#
# This module supports requiring a minimum version, e.g. you can do
# find_package(Eigen3 3.1.2)
# to require version 3.1.2 or newer of Eigen3.
#
# Once done this will define
#
# EIGEN3_FOUND - system has eigen lib with correct version
# EIGEN3_INCLUDE_DIR - the eigen include directory
# EIGEN3_VERSION - eigen version
# Copyright (c) 2006, 2007 Montel Laurent, <montel@kde.org>
# Copyright (c) 2008, 2009 Gael Guennebaud, <g.gael@free.fr>
# Copyright (c) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
# Redistribution and use is allowed according to the terms of the 2-clause BSD license.
if(NOT Eigen3_FIND_VERSION)
if(NOT Eigen3_FIND_VERSION_MAJOR)
set(Eigen3_FIND_VERSION_MAJOR 2)
endif(NOT Eigen3_FIND_VERSION_MAJOR)
if(NOT Eigen3_FIND_VERSION_MINOR)
set(Eigen3_FIND_VERSION_MINOR 91)
endif(NOT Eigen3_FIND_VERSION_MINOR)
if(NOT Eigen3_FIND_VERSION_PATCH)
set(Eigen3_FIND_VERSION_PATCH 0)
endif(NOT Eigen3_FIND_VERSION_PATCH)
set(Eigen3_FIND_VERSION "${Eigen3_FIND_VERSION_MAJOR}.${Eigen3_FIND_VERSION_MINOR}.${Eigen3_FIND_VERSION_PATCH}")
endif(NOT Eigen3_FIND_VERSION)
macro(_eigen3_check_version)
file(READ "${EIGEN3_INCLUDE_DIR}/Eigen/src/Core/util/Macros.h" _eigen3_version_header)
string(REGEX MATCH "define[ \t]+EIGEN_WORLD_VERSION[ \t]+([0-9]+)" _eigen3_world_version_match "${_eigen3_version_header}")
set(EIGEN3_WORLD_VERSION "${CMAKE_MATCH_1}")
string(REGEX MATCH "define[ \t]+EIGEN_MAJOR_VERSION[ \t]+([0-9]+)" _eigen3_major_version_match "${_eigen3_version_header}")
set(EIGEN3_MAJOR_VERSION "${CMAKE_MATCH_1}")
string(REGEX MATCH "define[ \t]+EIGEN_MINOR_VERSION[ \t]+([0-9]+)" _eigen3_minor_version_match "${_eigen3_version_header}")
set(EIGEN3_MINOR_VERSION "${CMAKE_MATCH_1}")
set(EIGEN3_VERSION ${EIGEN3_WORLD_VERSION}.${EIGEN3_MAJOR_VERSION}.${EIGEN3_MINOR_VERSION})
if(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
set(EIGEN3_VERSION_OK FALSE)
else(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
set(EIGEN3_VERSION_OK TRUE)
endif(${EIGEN3_VERSION} VERSION_LESS ${Eigen3_FIND_VERSION})
if(NOT EIGEN3_VERSION_OK)
message(STATUS "Eigen3 version ${EIGEN3_VERSION} found in ${EIGEN3_INCLUDE_DIR}, "
"but at least version ${Eigen3_FIND_VERSION} is required")
endif(NOT EIGEN3_VERSION_OK)
endmacro(_eigen3_check_version)
if (EIGEN3_INCLUDE_DIR)
# in cache already
_eigen3_check_version()
set(EIGEN3_FOUND ${EIGEN3_VERSION_OK})
else (EIGEN3_INCLUDE_DIR)
find_path(EIGEN3_INCLUDE_DIR NAMES signature_of_eigen3_matrix_library
PATHS
${CMAKE_INSTALL_PREFIX}/include
${KDE4_INCLUDE_DIR}
PATH_SUFFIXES eigen3 eigen
)
if(EIGEN3_INCLUDE_DIR)
_eigen3_check_version()
endif(EIGEN3_INCLUDE_DIR)
include(FindPackageHandleStandardArgs)
find_package_handle_standard_args(Eigen3 DEFAULT_MSG EIGEN3_INCLUDE_DIR EIGEN3_VERSION_OK)
mark_as_advanced(EIGEN3_INCLUDE_DIR)
endif(EIGEN3_INCLUDE_DIR)
find_package(Doxygen)
if(NOT DOXYGEN_FOUND)
message(FATAL_ERROR "Doxygen is needed to build the documentation.")
endif()
set(doxyfile_in ${CMAKE_CURRENT_SOURCE_DIR}/Doxyfile.in)
set(doxyfile ${CMAKE_CURRENT_BINARY_DIR}/Doxyfile)
configure_file(${doxyfile_in} ${doxyfile} @ONLY)
add_custom_target(doc
COMMAND ${DOXYGEN_EXECUTABLE} ${doxyfile}
WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}
COMMENT "Generating API documentation with Doxygen"
VERBATIM
)
install(DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/html DESTINATION doc)
PROJECT_NAME = "@CMAKE_PROJECT_NAME@"
PROJECT_NUMBER = @eos_VERSION_MAJOR@.@eos_VERSION_MINOR@.@eos_VERSION_PATCH@
STRIP_FROM_PATH = @PROJECT_SOURCE_DIR@
INPUT = @PROJECT_SOURCE_DIR@/README.md \
@PROJECT_SOURCE_DIR@/include \
@PROJECT_SOURCE_DIR@/src
RECURSIVE = YES
USE_MDFILE_AS_MAINPAGE = README.md
USE_MATHJAX = YES
MATHJAX_RELPATH = http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML
project(examples)
cmake_minimum_required(VERSION 2.8.7)
# The examples need a few additional dependencies (e.g. boost filesystem and OpenCV highgui):
find_package(OpenCV 2.4.3 REQUIRED core imgproc highgui)
message(STATUS "OpenCV include dir found at ${OpenCV_INCLUDE_DIRS}")
message(STATUS "OpenCV lib dir found at ${OpenCV_LIB_DIR}")
find_package(Boost 1.48.0 COMPONENTS system filesystem program_options REQUIRED)
if(Boost_FOUND)
message(STATUS "Boost found at ${Boost_INCLUDE_DIRS}")
else(Boost_FOUND)
message(FATAL_ERROR "Boost not found")
endif()
# Model fitting (affine cam & shape to landmarks) example:
add_executable(fit_model fit_model.cpp)
target_link_libraries(fit_model eos ${OpenCV_LIBS} ${Boost_LIBRARIES})
# TODO Add dependency to library-target??
# install target:
install(TARGETS fit_model DESTINATION bin)
install(DIRECTORY ${CMAKE_SOURCE_DIR}/examples/data DESTINATION bin)
version: 1
n_points: 68
{
115.167660 220.807529
116.164839 245.721357
120.208690 270.389841
126.818237 293.156059
135.630967 313.719094
148.115667 336.485312
162.069155 357.782742
175.244288 375.646752
196.629641 382.645477
218.251194 381.353984
240.107363 364.628222
258.624908 347.083661
276.182758 326.369112
287.933064 300.889178
292.640683 273.327417
296.864703 246.434902
300.377962 218.496828
123.880661 214.575887
139.490678 215.929559
153.266075 219.788449
167.524839 225.304335
181.178785 232.537082
209.926602 232.365554
228.769747 226.989098
245.270669 222.183443
262.623085 220.119501
278.396024 221.284493
195.438309 247.230838
193.878987 266.412131
192.715650 283.702654
191.413450 299.777554
175.394672 303.212546
183.252244 309.321263
192.860805 313.386123
203.029501 309.992086
211.167139 305.865789
143.511472 240.605877
152.873610 234.904027
165.885257 234.655325
175.515413 243.565778
165.006732 245.420441
152.026189 244.447496
222.758288 246.624566
233.246081 239.604592
245.639459 238.315050
255.057142 244.458884
245.790086 249.092411
234.108232 249.773901
162.766194 318.246815
173.239365 319.463029
184.243161 320.665411
193.282615 323.761650
203.914072 322.478920
217.708849 323.720545
234.039780 323.266218
216.911898 345.507827
203.746197 349.087438
192.056977 349.252320
181.960552 346.648746
170.687582 338.371143
169.898521 322.774535
183.940980 324.969545
193.291010 327.191247
203.605936 327.453212
227.819411 327.220701
203.605936 336.539751
193.356785 336.194279
183.164758 334.765621
}
\ No newline at end of file
The data in this folder was downloaded from http://ibug.doc.ic.ac.uk/resources/300-W/ on 15 December 2014.
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: examples/fit_model.cpp
*
* Copyright 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/core/LandmarkMapper.hpp"
#include "eos/fitting/AffineCameraEstimation.hpp"
#include "eos/fitting/LinearShapeFitting.hpp"
#include "eos/morphablemodel/io/cvssp.hpp"
#include "eos/render/utils.hpp"
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#ifdef WIN32
#define BOOST_ALL_DYN_LINK // Link against the dynamic boost lib. Seems to be necessary because we use /MD, i.e. link to the dynamic CRT.
#define BOOST_ALL_NO_LIB // Don't use the automatic library linking by boost with VS2010 (#pragma ...). Instead, we specify everything in cmake.
#endif
#include "boost/program_options.hpp"
#include "boost/filesystem.hpp"
#include <vector>
#include <iostream>
#include <fstream>
using namespace eos;
namespace po = boost::program_options;
namespace fs = boost::filesystem;
using cv::Mat;
using cv::Vec2f;
using cv::Vec3f;
using cv::Vec4f;
using std::cout;
using std::endl;
using std::vector;
using std::string;
/**
* Reads an ibug .pts landmark file and returns an ordered vector with
* the 68 2D landmark coordinates.
*
* @param[in] filename Path to a .pts file.
* @return An ordered vector with the 68 ibug landmarks.
*/
vector<Vec2f> readPtsLandmarks(std::string filename)
{
using std::getline;
vector<Vec2f> landmarks;
landmarks.reserve(68);
std::ifstream file(filename);
if (!file.is_open()) {
throw std::runtime_error(string("Unable to open landmark file: " + filename));
}
string line;
// Skip the first 3 lines, they're header lines:
getline(file, line); // 'version: 1'
getline(file, line); // 'n_points : 68'
getline(file, line); // '{'
while (getline(file, line))
{
if (line == "}") { // end of the file
break;
}
std::stringstream lineStream(line);
Vec2f landmark(0.0f, 0.0f);
if (!(lineStream >> landmark[0] >> landmark[1])) {
throw std::runtime_error(string("Landmark format error while parsing the line: " + line));
}
// From the iBug website:
// "Please note that the re-annotated data for this challenge are saved in the Matlab convention of 1 being
// the first index, i.e. the coordinates of the top left pixel in an image are x=1, y=1."
// ==> So we shift every point by 1:
landmark[0] -= 1.0f;
landmark[1] -= 1.0f;
landmarks.emplace_back(landmark);
}
return landmarks;
};
/**
* This app demonstrates estimation of the camera and fitting of the shape
* model of a 3D Morphable Model from an ibug LFPW image with its landmarks.
*
* First, the 68 ibug landmarks are loaded from the .pts file and converted
* to vertex indices using the LandmarkMapper. Then, an affine camera matrix
* is estimated, and then, using this camera matrix, the shape is fitted
* to the landmarks.
*/
int main(int argc, char *argv[])
{
fs::path modelfile, isomapfile, imagefile, landmarksfile, mappingsfile;
try {
po::options_description desc("Allowed options");
desc.add_options()
("help,h",
"display the help message")
("model,m", po::value<fs::path>(&modelfile)->required(),
"a CVSSP .scm Morphable Model file")
("isomap,t", po::value<fs::path>(&isomapfile),
"optional isomap containing the texture mapping coordinates")
("image,i", po::value<fs::path>(&imagefile)->required()->default_value("data/image_0001.png"),
"an input image")
("landmarks,l", po::value<fs::path>(&landmarksfile)->required()->default_value("data/image_0001.pts"),
"2D landmarks for the image, in ibug .pts format")
("mapping,p", po::value<fs::path>(&mappingsfile)->required()->default_value("../share/ibug2did.txt"),
"landmark identifier to model vertex number mapping")
;
po::variables_map vm;
po::store(po::command_line_parser(argc, argv).options(desc).run(), vm);
if (vm.count("help")) {
cout << "Usage: fit_model [options]" << endl;
cout << desc;
return EXIT_SUCCESS;
}
po::notify(vm);
}
catch (po::error& e) {
cout << "Error while parsing command-line arguments: " << e.what() << endl;
cout << "Use --help to display a list of options." << endl;
return EXIT_SUCCESS;
}
// Load the image, landmarks, LandmarkMapper and the Morphable Model:
Mat image = cv::imread(imagefile.string());
auto landmarks = readPtsLandmarks(landmarksfile.string());
morphablemodel::MorphableModel morphableModel = morphablemodel::loadScmModel(modelfile, isomapfile);
morphablemodel::LandmarkMapper landmarkMapper = mappingsfile.empty() ? morphablemodel::LandmarkMapper() : morphablemodel::LandmarkMapper(mappingsfile);
// Draw the loaded landmarks:
Mat outimg = image.clone();
for (auto&& lm : landmarks) {
cv::rectangle(outimg, cv::Point2f(lm[0] - 2.0f, lm[1] - 2.0f), cv::Point2f(lm[0] + 2.0f, lm[1] + 2.0f), { 255, 0, 0 });
}
// Convert the landmarks to clip-space:
std::transform(begin(landmarks), end(landmarks), begin(landmarks), [&image](const Vec2f& lm) { return render::screenToClipSpace(lm, image.cols, image.rows); });
// These will be the final 2D and 3D points used for the fitting:
vector<Vec4f> modelPoints; ///< the points in the 3D shape model
vector<int> vertexIndices; ///< their vertex indices
vector<Vec2f> imagePoints; ///< the corresponding 2D landmark points
// Sub-select all the landmarks which we have a mapping for (i.e. that are defined in the 3DMM):
int ibugId = 1;
for (int i = 0; i < landmarks.size(); ++i) {
try {
int vertexIdx = boost::lexical_cast<int>(landmarkMapper.convert(std::to_string(ibugId)));
Vec4f vertex = morphableModel.getShapeModel().getMeanAtPoint(vertexIdx);
modelPoints.emplace_back(vertex);
vertexIndices.emplace_back(vertexIdx);
imagePoints.emplace_back(landmarks[i]);
}
catch (std::out_of_range& e) {
// just continue if the point isn't defined in the mapping
}
++ibugId;
}
// Estimate the camera from the 2D - 3D point correspondences
Mat affineCam = fitting::estimateAffineCamera(imagePoints, modelPoints);
// Draw the mean-face landmarks projected using the estimated camera:
for (auto&& vertex : modelPoints) {
Vec2f screenPoint = fitting::projectAffine(vertex, affineCam, image.cols, image.rows);
cv::circle(outimg, cv::Point2f(screenPoint), 5.0f, { 0.0f, 255.0f, 0.0f });
}
// Estimate the shape coefficients by fitting the shape to the landmarks:
float lambda = 5.0f; ///< the regularisation parameter
vector<float> fittedCoeffs = fitting::fitShapeToLandmarksLinear(morphableModel, affineCam, imagePoints, vertexIndices, lambda);
// Obtain the full mesh and draw it using the estimated camera:
render::Mesh mesh = morphableModel.drawSample(fittedCoeffs, vector<float>());
render::writeObj(mesh, "out.obj"); // save the mesh as obj
// Draw the projected points again, this time using the fitted model shape:
for (auto&& idx : vertexIndices) {
Vec4f modelPoint(mesh.vertices[idx][0], mesh.vertices[idx][1], mesh.vertices[idx][2], mesh.vertices[idx][3]);
Vec2f screenPoint = fitting::projectAffine(modelPoint, affineCam, image.cols, image.rows);
cv::circle(outimg, cv::Point2f(screenPoint), 3.0f, { 0.0f, 0.0f, 255.0f });
}
// Save the output image:
cv::imwrite("out.png", outimg);
std::cout << "Finished fitting and wrote result to out.png." << std::endl;
return EXIT_SUCCESS;
}
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/core/LandmarkMapper.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef LANDMARKMAPPER_HPP_
#define LANDMARKMAPPER_HPP_
#ifdef WIN32
#define BOOST_ALL_DYN_LINK // Link against the dynamic boost lib. Seems to be necessary because we use /MD, i.e. link to the dynamic CRT.
#define BOOST_ALL_NO_LIB // Don't use the automatic library linking by boost with VS2010 (#pragma ...). Instead, we specify everything in cmake.
#endif
#include "boost/filesystem/path.hpp"
#include <string>
#include <map>
namespace eos {
namespace morphablemodel {
/**
* Represents a mapping from one kind of landmarks
* to a different format. Mappings are stored in a
* file (see share/ for an example for ibug landmarks).
*/
class LandmarkMapper {
public:
/**
* Constructs a new landmark mapper that performs an identity mapping,
* that is, its output is the same as the input.
*
*/
LandmarkMapper() = default;
/**
* Constructs a new landmark mapper from a mappings-file.
*
* @param[in] filename A file with landmark mappings.
*/
LandmarkMapper(boost::filesystem::path filename);
/**
* Converts the given landmark name to the mapped name.
*
* @param[in] landmarkName A landmark name to convert.
* @return The mapped landmark name.
* @throws out_of_range exception if there is no mapping
* for the given landmarkName.
*/
std::string convert(std::string landmarkName);
private:
std::map<std::string, std::string> landmarkMappings; ///< Mapping from one landmark name to a name in a different format.
};
} /* namespace morphablemodel */
} /* namespace eos */
#endif /* LANDMARKMAPPER_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/fitting/AffineCameraEstimation.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef AFFINECAMERAESTIMATION_HPP_
#define AFFINECAMERAESTIMATION_HPP_
#include "opencv2/core/core.hpp"
#include <vector>
namespace eos {
namespace fitting {
/**
* The Gold Standard Algorithm for estimating an affine
* camera matrix from world to image correspondences.
* See Algorithm 7.2 in Multiple View Geometry, Hartley &
* Zisserman, 2nd Edition, 2003.
*
* Requires >= 4 corresponding points.
*
* @param[in] imagePoints A list of 2D image points.
* @param[in] modelPoints Corresponding points of a 3D model.
* @return A 3x4 affine camera matrix (the third row is [0, 0, 0, 1]).
*/
cv::Mat estimateAffineCamera(std::vector<cv::Vec2f> imagePoints, std::vector<cv::Vec4f> modelPoints);
/**
* Projects a point from world coordinates to screen coordinates.
* First, an estimated affine camera matrix is used to transform
* the point to clip space. Second, the point is transformed to
* screen coordinates using the window transform. The window transform
* also flips the y-axis (the image origin is top-left, while in
* clip space top is +1 and bottom is -1).
*
* @param[in] vertex A vertex in 3D space. vertex[3] = 1.0f.
* @param[in] affineCameraMatrix A 3x4 affine camera matrix.
* @param[in] screenWidth Width of the screen or window used for projection.
* @param[in] screenHeight Height of the screen or window used for projection.
* @return A vector with x and y coordinates transformed to screen coordinates.
*/
cv::Vec2f projectAffine(cv::Vec4f vertex, cv::Mat affineCameraMatrix, int screenWidth, int screenHeight);
} /* namespace fitting */
} /* namespace eos */
#endif /* AFFINECAMERAESTIMATION_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/fitting/LinearShapeFitting.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef LINEARSHAPEFITTING_HPP_
#define LINEARSHAPEFITTING_HPP_
#include "eos/morphablemodel/MorphableModel.hpp"
#include "opencv2/core/core.hpp"
#include "boost/optional.hpp"
#include <vector>
namespace eos {
namespace fitting {
/**
* Fits the shape of a Morphable Model to given 2D landmarks (i.e. estimates the maximum likelihood solution of the shape coefficients) as proposed in [1].
* It's a linear, closed-form solution fitting of the shape, with regularisation (prior towards the mean).
*
* [1] O. Aldrian & W. Smith, Inverse Rendering of Faces with a 3D Morphable Model, PAMI 2013.
*
* Note: Using less than the maximum number of coefficients to fit is not thoroughly tested yet and may contain an error.
* Note: Returns coefficients following standard normal distribution (i.e. all have similar magnitude). Why? Because we fit using the normalised basis?
* Note: The standard deviations given should be a vector, i.e. different for each landmark. This is not implemented yet.
*
* @param[in] morphableModel The Morphable Model whose shape (coefficients) are estimated.
* @param[in] affineCameraMatrix A 3x4 affine camera matrix from world to clip-space (should probably be of type CV_32FC1 as all our calculations are done with float).
* @param[in] landmarks 2D landmarks from an image, given in clip-coordinates.
* @param[in] vertexIds The vertex ids in the model that correspond to the 2D points.
* @param[in] lambda The regularisation parameter (weight of the prior towards the mean).
* @param[in] numCoefficientsToFit How many shape-coefficients to fit (all others will stay 0). Not tested thoroughly.
* @param[in] detectorStandardDeviation The standard deviation of the 2D landmarks given (e.g. of the detector used).
* @param[in] modelStandardDeviation The standard deviation of the 3D vertex points in the 3D model.
* @return The estimated shape-coefficients (alphas).
*/
std::vector<float> fitShapeToLandmarksLinear(morphablemodel::MorphableModel morphableModel, cv::Mat affineCameraMatrix, std::vector<cv::Vec2f> landmarks, std::vector<int> vertexIds, float lambda=20.0f, boost::optional<int> numCoefficientsToFit=boost::optional<int>(), boost::optional<float> detectorStandardDeviation=boost::optional<float>(), boost::optional<float> modelStandardDeviation=boost::optional<float>());
} /* namespace fitting */
} /* namespace eos */
#endif /* LINEARSHAPEFITTING_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/morphablemodel/MorphableModel.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef MORPHABLEMODEL_HPP_
#define MORPHABLEMODEL_HPP_
#include "eos/morphablemodel/PcaModel.hpp"
#include "eos/render/Mesh.hpp"
#include <vector>
namespace eos {
namespace morphablemodel {
/**
* A class representing a 3D Morphable Model.
* It consists of a shape- and albedo (texture) PCA model.
*
* For the general idea of 3DMMs see T. Vetter, V. Blanz,
* 'A Morphable Model for the Synthesis of 3D Faces', SIGGRAPH 1999
*/
class MorphableModel
{
public:
/**
* Create a Morphable Model from a shape and a color PCA model, and optional
* texture coordinates.
*
* @param[in] shapeModel A PCA model over the shape.
* @param[in] colorModel A PCA model over the color (albedo).
* @param[in] textureCoordinates Optional texture coordinates for every vertex.
*/
MorphableModel(PcaModel shapeModel, PcaModel colorModel, std::vector<cv::Vec2f> textureCoordinates = std::vector<cv::Vec2f>());
/**
* Returns the PCA shape model of this Morphable Model.
* as a Mesh.
*
* @return The shape model.
*/
PcaModel getShapeModel() const;
/**
* Returns the PCA color or albedo model of this Morphable Model.
*
* @return The color model.
*/
PcaModel getColorModel() const;
/**
* Returns the mean of the shape- and color model as a Mesh.
*
* @return An mesh instance of the mean of the Morphable Model.
*/
render::Mesh getMean() const;
/**
* Draws a random sample from the model, where the coefficients
* for the shape- and color models are both drawn from a standard
* normal (or with the given standard deviation).
*
* @param[in] shapeSigma The shape model standard deviation.
* @param[in] colorSigma The color model standard deviation.
* @return A random sample from the model.
*/
render::Mesh drawSample(float shapeSigma = 1.0f, float colorSigma = 1.0f);
/**
* Returns a sample from the model with the given shape- and
* color PCA coefficients.
*
* If one of the given vectors is empty, the mean is used.
* The coefficient vectors should contain normalised, i.e. standard normal distributed coefficients.
*
* @param[in] shapeCoefficients The PCA coefficients used to generate the shape sample.
* @param[in] colorCoefficients The PCA coefficients used to generate the shape sample.
* @return A model instance with given coefficients.
*/
render::Mesh drawSample(std::vector<float> shapeCoefficients, std::vector<float> colorCoefficients);
private:
PcaModel shapeModel; ///< A PCA model of the shape
PcaModel colorModel; ///< A PCA model of vertex color information
std::vector<cv::Vec2f> textureCoordinates; ///< uv-coordinates for every vertex
/**
* Returns whether the model has texture mapping coordinates, i.e.
* coordinates for every vertex.
*
* @return True if the model contains texture mapping coordinates.
*/
bool hasTextureCoordinates() const {
return textureCoordinates.size() > 0 ? true : false;
};
};
} /* namespace morphablemodel */
} /* namespace eos */
#endif /* MORPHABLEMODEL_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/morphablemodel/PcaModel.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef PCAMODEL_HPP_
#define PCAMODEL_HPP_
#include "opencv2/core/core.hpp"
#ifdef WIN32
#define BOOST_ALL_DYN_LINK // Link against the dynamic boost lib. Seems to be necessary because we use /MD, i.e. link to the dynamic CRT.
#define BOOST_ALL_NO_LIB // Don't use the automatic library linking by boost with VS2010 (#pragma ...). Instead, we specify everything in cmake.
#endif
#include "boost/filesystem/path.hpp"
#include <string>
#include <vector>
#include <array>
#include <random>
namespace eos {
namespace morphablemodel {
/**
* This class represents a PCA-model that consists of:
* - a mean vector (y x z)
* - a PCA basis matrix (unnormalised and normalised)
* - a PCA variance vector.
*
* It also contains a list of triangles to built a mesh as well as a mapping
* from landmark points to the corresponding vertex-id in the mesh.
* It is able to return instances of the model as meshes.
*/
class PcaModel
{
public:
/**
* Construct a PCA model from given mean, normalised PCA basis, eigenvalues
* and triangle list.
*
* See the documentation of the member variables for how the data should
* be arranged.
*
* @param[in] mean The mean used to build the PCA model.
* @param[in] pcaBasis The PCA basis (eigenvectors), normalised (multiplied by the eigenvalues).
* @param[in] eigenvalues The eigenvalues used to build the PCA model.
* @param[in] triangleList An index list of how to assemble the mesh.
*/
PcaModel(cv::Mat mean, cv::Mat pcaBasis, cv::Mat eigenvalues, std::vector<std::array<int, 3>> triangleList);
/**
* Returns the number of principal components in the model.
*
* @return The number of principal components in the model.
*/
int getNumberOfPrincipalComponents() const;
/**
* Returns the dimension of the data, i.e. the number of shape dimensions.
*
* As the data is arranged in a [x y z x y z ...] fashion, dividing this by
* three yields the number of vertices in the model.
*
* @return The dimension of the data.
*/
int getDataDimension() const;
/**
* Returns a list of triangles on how to assemble the vertices into a mesh.
*
* @return The list of triangles to build a mesh.
*/
std::vector<std::array<int, 3>> getTriangleList() const;
/**
* Returns the mean of the model.
*
* @return The mean of the model.
*/
cv::Mat getMean() const;
/**
* Return the value of the mean at a given vertex id.
*
* @param[in] vertexIndex A vertex id.
* @return A homogeneous vector containing the values at the given vertex id.
*/
cv::Vec4f getMeanAtPoint(int vertexIndex) const;
/**
* Draws a random sample from the model, where the coefficients are drawn
* from a standard normal (or with the given standard deviation).
*
* @param[in] sigma The standard deviation.
* @return A random sample from the model.
*/
cv::Mat drawSample(float sigma = 1.0f);
/**
* Returns a sample from the model with the given PCA coefficients.
* The given coefficients should follow a standard normal distribution, i.e.
* not be "normalised" with their eigenvalues/variances.
*
* @param[in] coefficients The PCA coefficients used to generate the sample.
* @return A model instance with given coefficients.
*/
cv::Mat drawSample(std::vector<float> coefficients);
/**
* Returns the PCA basis matrix, i.e. the eigenvectors.
* Each column of the matrix is an eigenvector.
* The returned basis is normalised, i.e. every eigenvector
* is normalised by multiplying it with the square root of its eigenvalue.
*
* Returns a clone of the matrix so that the original cannot
* be modified. TODO: No, don't return a clone.
*
* @return Returns the normalised PCA basis matrix.
*/
cv::Mat getNormalisedPcaBasis() const;
/**
* Returns the PCA basis for a particular vertex.
* The returned basis is normalised, i.e. every eigenvector
* is normalised by multiplying it with the square root of its eigenvalue.
*
* @param[in] vertexId A vertex index. Make sure it is valid.
* @return A Mat that points to the rows in the original basis.
*/
cv::Mat getNormalisedPcaBasis(int vertexId) const;
/**
* Returns the PCA basis matrix, i.e. the eigenvectors.
* Each column of the matrix is an eigenvector.
* The returned basis is unnormalised, i.e. not scaled by their eigenvalues.
*
* Returns a clone of the matrix so that the original cannot
* be modified. TODO: No, don't return a clone.
*
* @return Returns the unnormalised PCA basis matrix.
*/
cv::Mat getUnnormalisedPcaBasis() const;
/**
* Returns the PCA basis for a particular vertex.
* The returned basis is unnormalised, i.e. not scaled by their eigenvalues.
*
* @param[in] vertexId A vertex index. Make sure it is valid.
* @return A Mat that points to the rows in the original basis.
*/
cv::Mat getUnnormalisedPcaBasis(int vertexId) const;
/**
* Returns an eigenvalue.
*
* @param[in] index The index of the eigenvalue to return.
* @return The eigenvalue.
*/
float getEigenvalue(int index) const;
private:
std::mt19937 engine; ///< Random number engine used to draw random coefficients.
cv::Mat mean; ///< A 3m x 1 col-vector (xyzxyz...)', where m is the number of model-vertices.
cv::Mat normalisedPcaBasis; ///< The normalised PCA basis matrix. m x n (rows x cols) = numShapeDims x numShapePcaCoeffs, (=eigenvector matrix V). Each column is an eigenvector.
cv::Mat unnormalisedPcaBasis; ///< The unnormalised PCA basis matrix. m x n (rows x cols) = numShapeDims x numShapePcaCoeffs, (=eigenvector matrix V). Each column is an eigenvector.
cv::Mat eigenvalues; ///< A col-vector of the eigenvalues (variances in the PCA space).
std::vector<std::array<int, 3>> triangleList; ///< List of triangles that make up the mesh of the model.
};
/**
* Takes an unnormalised PCA basis matrix (a matrix consisting
* of the eigenvectors and normalises it, i.e. multiplies each
* eigenvector by the square root of its corresponding
* eigenvalue.
*
* @param[in] unnormalisedBasis An unnormalised PCA basis matrix.
* @param[in] eigenvalues A row or column vector of eigenvalues.
* @return The normalised PCA basis matrix.
*/
cv::Mat normalisePcaBasis(cv::Mat unnormalisedBasis, cv::Mat eigenvalues);
/**
* Takes a normalised PCA basis matrix (a matrix consisting
* of the eigenvectors and denormalizes it, i.e. multiplies each
* eigenvector by 1 over the square root of its corresponding
* eigenvalue.
*
* @param[in] normalisedBasis A normalised PCA basis matrix.
* @param[in] eigenvalues A row or column vector of eigenvalues.
* @return The unnormalised PCA basis matrix.
*/
cv::Mat unnormalisePcaBasis(cv::Mat normalisedBasis, cv::Mat eigenvalues);
} /* namespace morphablemodel */
} /* namespace eos */
#endif /* PCAMODEL_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/morphablemodel/io/cvssp.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef IO_CVSSP_HPP_
#define IO_CVSSP_HPP_
#include "eos/morphablemodel/MorphableModel.hpp"
#include "opencv2/core/core.hpp"
#ifdef WIN32
#define BOOST_ALL_DYN_LINK // Link against the dynamic boost lib. Seems to be necessary because we use /MD, i.e. link to the dynamic CRT.
#define BOOST_ALL_NO_LIB // Don't use the automatic library linking by boost with VS2010 (#pragma ...). Instead, we specify everything in cmake.
#endif
#include "boost/filesystem/path.hpp"
#include <vector>
namespace eos {
namespace morphablemodel {
/**
* Load a shape or color model from a .scm file containing
* a Morphable Model in the Surrey format.
*
* Note on multi-resolution models: The landmarks to vertex-id mapping is
* always the same. The lowest resolution model has all the landmarks defined
* and for the higher resolutions, the mesh is divided from that on.
* Note: For new landmarks we add, this might not be the case if we add them
* in the highest resolution model, so take care!
*
* - The pcaBasis matrix stored in the file and loaded is the orthogonal PCA basis, i.e. it is not normalised by the eigenvalues.
*
* @param[in] modelFilename A binary .scm-file containing the model.
* @param[in] isomapFile An optional path to an isomap containing texture coordinates.
* @return The Morphable Model loaded from the file.
*/
MorphableModel loadScmModel(boost::filesystem::path modelFilename, boost::filesystem::path isomapFile = boost::filesystem::path());
/**
* Load a set of 2D texture coordinates pre-generated by the isomap algorithm.
* After loading, we rescale the coordinates to [0, 1] x [0, 1].
*
* @param[in] isomapFile Path to an isomap file containing texture coordinates.
* @return The 2D texture coordinates for every vertex.
*/
std::vector<cv::Vec2f> loadIsomap(boost::filesystem::path isomapFile);
} /* namespace morphablemodel */
} /* namespace eos */
#endif /* IO_CVSSP_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/render/Mesh.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef MESH_HPP_
#define MESH_HPP_
#include "opencv2/core/core.hpp"
#include <vector>
#include <array>
#include <string>
namespace eos {
namespace render {
/**
* This class represents a 3D mesh consisting of vertices and vertex color
* information. Additionally it stores the indices that specify which vertices
* to use to generate the triangle mesh out of the vertices.
*/
class Mesh
{
public:
std::vector<cv::Vec4f> vertices; ///< 3D vertex positions.
std::vector<cv::Vec3f> colors; ///< Color information for each vertex. Expected to be in RGB order.
std::vector<cv::Vec2f> texcoords; ///< Texture coordinates for each vertex.
std::vector<std::array<int, 3>> tvi; ///< Triangle vertex indices
std::vector<std::array<int, 3>> tci; ///< Triangle color indices
};
/**
* Writes an obj file of the given Mesh that can be read by e.g. Meshlab.
*
* @param[in] mesh The mesh to save as obj.
* @param[in] filename Output filename.
*/
void writeObj(Mesh mesh, std::string filename);
} /* namespace render */
} /* namespace eos */
#endif /* MESH_HPP_ */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/render/utils.hpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef RENDER_UTILS_HPP_
#define RENDER_UTILS_HPP_
#include "opencv2/core/core.hpp"
namespace eos {
namespace render {
/**
* Transforms a point from clip space ([-1, 1] x [-1, 1]) to
* image (screen) coordinates, i.e. the window transform.
* Note that the y-coordinate is flipped because the image origin
* is top-left while in clip space top is +1 and bottom is -1.
* No z-division is performed.
* Note: It should rather be called from NDC to screen space?
*
* Exactly conforming to the OpenGL viewport transform, except that
* we flip y at the end.
* Qt: Origin top-left. OpenGL: bottom-left. OCV: top-left.
*
* @param[in] clipCoordinates A point in clip coordinates.
* @param[in] screenWidth Width of the screen or window.
* @param[in] screenHeight Height of the screen or window.
* @return A vector with x and y coordinates transformed to screen space.
*/
cv::Vec2f clipToScreenSpace(cv::Vec2f clipCoordinates, int screenWidth, int screenHeight);
/**
* Transforms a point from image (screen) coordinates to
* clip space ([-1, 1] x [-1, 1]).
* Note that the y-coordinate is flipped because the image origin
* is top-left while in clip space top is +1 and bottom is -1.
*
* @param[in] screenCoordinates A point in screen coordinates.
* @param[in] screenWidth Width of the screen or window.
* @param[in] screenHeight Height of the screen or window.
* @return A vector with x and y coordinates transformed to clip space.
*/
cv::Vec2f screenToClipSpace(cv::Vec2f screenCoordinates, int screenWidth, int screenHeight);
} /* namespace render */
} /* namespace eos */
#endif /* RENDER_UTILS_HPP_ */
# Mechanism via FindLIB.cmake
# ==============================
# Boost:
# -------
# Windows: Download the pre-built binaries from http://sourceforge.net/projects/boost/files/boost-binaries/ for VS2013 (msvc-12 64bit).
# Set the windows PATH variable to "<YOUR_BOOST_DIRECTORY>\lib64-msvc-12.0" and CMake will find it.
# Linux: Boost can usually be installed via a package manager (e.g. apt-get install boost-all-dev) and this variable can be left uncommented.
#set(BOOST_ROOT "/home/user/boost/install" CACHE STRING "Boost search location" FORCE)
# Mechanism via ConfigLIB.cmake in 3rd party library directory
# ==============================
# OpenCV:
# -------
# Windows: Download the package from opencv.org, use 2.4.7.2 or never. It includes binaries for VS2013. Set this path accordingly.
#set(OpenCV_DIR "C:\\opencv\\install" CACHE STRING "OpenCV config dir, where OpenCVConfig.cmake can be found" FORCE)
# Linux: Usually can be left blank but it can be used if OpenCV is not found.
#set(OpenCV_DIR "/home/user/opencv/install/share/OpenCV" CACHE STRING "OpenCV config dir, where OpenCVConfig.cmake can be found" FORCE)
# Configuration options
# ==============================
set(BUILD_EXAMPLES ON CACHE BOOL "Build the example applications." FORCE)
set(BUILD_DOCUMENTATION ON CACHE BOOL "Build the library documentation." FORCE)
; Mapping from the 68-point iBug annotations to the Surrey DID format (3DMM vertex indices).
; Partial mapping
; Created by: Patrik Huber, 19.04.2014
landmarkMappings ; A mapping from input landmarks (iBug, lhs) to output landmarks (DID, rhs)
{
; 9 35 ; 9 is not the chin tip (4) - the DID point is much higher up
18 225 ; right eyebrow outer-corner (18)
20 233 ; right eyebrow middle (top-of-eyebrow?) (20)
22 157 ; right eyebrow inner-corner (top-of-eyebrow?) (19)
23 590 ; left eyebrow inner-corner (top-of-eyebrow?) (23)
25 666 ; left eyebrow middle (top-of-eyebrow?) (24)
27 658 ; left eyebrow outer-corner (22)
31 114 ; nose-tip (3)
34 270 ; nose-lip junction (28)
37 177 ; right eye outer-corner (1)
40 181 ; right eye inner-corner (5)
43 614 ; left eye inner-corner (8)
46 610 ; left eye outer-corner (2)
49 398 ; right mouth corner (12)
52 329 ; upper lip middle top (14)
55 812 ; left mouth corner (13)
58 411 ; lower lip middle bottom (17)
}
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: src/eos/core/LandmarkMapper.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/core/LandmarkMapper.hpp"
#include "boost/property_tree/ptree.hpp"
#include "boost/property_tree/info_parser.hpp"
#include <iostream>
using boost::property_tree::ptree;
using std::string;
namespace eos {
namespace morphablemodel {
LandmarkMapper::LandmarkMapper(boost::filesystem::path filename)
{
ptree configTree;
try {
boost::property_tree::info_parser::read_info(filename.string(), configTree);
}
catch (const boost::property_tree::ptree_error& error) {
throw std::runtime_error(string("LandmarkMapper: Error reading landmark-mappings file: ") + error.what());
}
try {
ptree ptLandmarkMappings = configTree.get_child("landmarkMappings");
for (auto&& mapping : ptLandmarkMappings) {
landmarkMappings.insert(make_pair(mapping.first, mapping.second.get_value<string>()));
}
std::cout << "Loaded a list of " << landmarkMappings.size() << " landmark mappings." << std::endl;
}
catch (const boost::property_tree::ptree_error& error) {
throw std::runtime_error(string("LandmarkMapper: Error while parsing the mappings file: ") + error.what());
}
catch (const std::runtime_error& error) {
throw std::runtime_error(string("LandmarkMapper: Error while parsing the mappings file: ") + error.what());
}
}
string LandmarkMapper::convert(string landmarkName)
{
if (landmarkMappings.empty()) {
// perform identity mapping, i.e. return the input
return landmarkName;
}
else {
return landmarkMappings.at(landmarkName); // throws an out_of_range exception if landmarkName does not match the key of any element in the map
}
}
} /* namespace morphablemodel */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: src/eos/fitting/AffineCameraEstimation.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/fitting/AffineCameraEstimation.hpp"
#include "eos/render/utils.hpp"
#include "opencv2/core/core_c.h" // for CV_REDUCE_AVG
#include <iostream>
#include <exception>
#include <cassert>
using cv::Mat;
using cv::Vec2f;
using cv::Vec3f;
using cv::Vec4f;
using std::vector;
namespace eos {
namespace fitting {
Mat estimateAffineCamera(vector<Vec2f> imagePoints, vector<Vec4f> modelPoints)
{
assert(imagePoints.size() == modelPoints.size());
const auto numCorrespondences = imagePoints.size();
if (numCorrespondences < 4) {
std::string errorMsg("AffineCameraEstimation: Number of points given needs to be equal to or larger than 4.");
std::cout << errorMsg << std::endl;
throw std::runtime_error(errorMsg);
}
Mat matImagePoints; // will be numCorrespondences x 2, CV_32FC1
Mat matModelPoints; // will be numCorrespondences x 3, CV_32FC1
for (int i = 0; i < imagePoints.size(); ++i) {
Mat imgPoint(1, 2, CV_32FC1);
imgPoint.at<float>(0, 0) = imagePoints[i][0];
imgPoint.at<float>(0, 1) = imagePoints[i][1];
matImagePoints.push_back(imgPoint);
Mat mdlPoint(1, 3, CV_32FC1);
mdlPoint.at<float>(0, 0) = modelPoints[i][0];
mdlPoint.at<float>(0, 1) = modelPoints[i][1];
mdlPoint.at<float>(0, 2) = modelPoints[i][2];
matModelPoints.push_back(mdlPoint);
}
// translate the centroid of the image points to the origin:
Mat imagePointsMean; // use non-homogeneous coords for the next few steps? (less submatrices etc overhead)
cv::reduce(matImagePoints, imagePointsMean, 0, CV_REDUCE_AVG);
imagePointsMean = cv::repeat(imagePointsMean, matImagePoints.rows, 1); // get T_13 and T_23 from imagePointsMean
matImagePoints = matImagePoints - imagePointsMean;
// scale the image points such that the RMS distance from the origin is sqrt(2):
// 1) calculate the average norm (root mean squared distance) of all vectors
float averageNorm = 0.0f; // TODO change to double!
for (int row = 0; row < matImagePoints.rows; ++row) {
averageNorm += cv::norm(matImagePoints.row(row), cv::NORM_L2);
}
averageNorm /= matImagePoints.rows;
// 2) multiply every vectors coordinate by sqrt(2)/avgnorm
float scaleFactor = std::sqrt(2)/averageNorm;
matImagePoints *= scaleFactor; // add unit homogeneous component here
// The points in matImagePoints now have a RMS distance from the origin of sqrt(2).
// The normalisation matrix so that the 2D points are mean-free and their norm is as described above.
Mat T = Mat::zeros(3, 3, CV_32FC1);
T.at<float>(0, 0) = scaleFactor; // s_x
T.at<float>(1, 1) = scaleFactor; // s_y
T.at<float>(0, 2) = -imagePointsMean.at<float>(0, 0) * scaleFactor; // t_x
T.at<float>(1, 2) = -imagePointsMean.at<float>(0, 1) * scaleFactor; // t_y
T.at<float>(2, 2) = 1;
// center the model points to the origin:
Mat tmpOrigMdlPoints = matModelPoints.clone(); // Temp for testing: Save the original coordinates.
// translate the centroid of the model points to the origin:
Mat modelPointsMean; // use non-homogeneous coords for the next few steps? (less submatrices etc overhead)
cv::reduce(matModelPoints, modelPointsMean, 0, CV_REDUCE_AVG);
modelPointsMean = cv::repeat(modelPointsMean, matModelPoints.rows, 1);
matModelPoints = matModelPoints - modelPointsMean;
// scale the model points such that the RMS distance from the origin is sqrt(3):
// 1) calculate the average norm (root mean squared distance) of all vectors
averageNorm = 0.0f;
for (int row = 0; row < matModelPoints.rows; ++row) {
averageNorm += cv::norm(matModelPoints.row(row), cv::NORM_L2);
}
averageNorm /= matModelPoints.rows;
// 2) multiply every vectors coordinate by sqrt(3)/avgnorm
scaleFactor = std::sqrt(3) / averageNorm;
matModelPoints *= scaleFactor; // add unit homogeneous component here
// The points in matModelPoints now have a RMS distance from the origin of sqrt(3).
// The normalisation matrix so that the 3D points are mean-free and their norm is as described above.
Mat U = Mat::zeros(4, 4, CV_32FC1);
U.at<float>(0, 0) = scaleFactor; // s_x
U.at<float>(1, 1) = scaleFactor; // s_y
U.at<float>(2, 2) = scaleFactor; // s_z
U.at<float>(0, 3) = -modelPointsMean.at<float>(0, 0) * scaleFactor; // t_x
U.at<float>(1, 3) = -modelPointsMean.at<float>(0, 1) * scaleFactor; // t_y
U.at<float>(2, 3) = -modelPointsMean.at<float>(0, 2) * scaleFactor; // t_z
U.at<float>(3, 3) = 1;
// Estimate the normalised camera matrix (C tilde).
// We are solving the system $A_8 * p_8 = b$
// The solution is obtained by the pseudo-inverse of A_8:
// $p_8 = A_8^+ * b$
Mat A_8 = Mat::zeros(numCorrespondences * 2, 8, CV_32FC1);
//Mat p_8(); // p_8 is 8 x 1. We are solving for it.
Mat b(numCorrespondences * 2, 1, CV_32FC1);
for (int i = 0; i < numCorrespondences; ++i) {
A_8.at<float>(2*i, 0) = matModelPoints.at<float>(i, 0); // could maybe made faster by assigning the whole row/col-range if possible?
A_8.at<float>(2*i, 1) = matModelPoints.at<float>(i, 1);
A_8.at<float>(2*i, 2) = matModelPoints.at<float>(i, 2);
A_8.at<float>(2*i, 3) = 1;
A_8.at<float>((2*i)+1, 4) = matModelPoints.at<float>(i, 0);
A_8.at<float>((2*i)+1, 5) = matModelPoints.at<float>(i, 1);
A_8.at<float>((2*i)+1, 6) = matModelPoints.at<float>(i, 2);
A_8.at<float>((2*i)+1, 7) = 1;
b.at<float>(2*i, 0) = matImagePoints.at<float>(i, 0);
b.at<float>((2*i)+1, 0) = matImagePoints.at<float>(i, 1);
}
Mat p_8 = A_8.inv(cv::DECOMP_SVD) * b;
Mat C_tilde = Mat::zeros(3, 4, CV_32FC1);
C_tilde.row(0) = p_8.rowRange(0, 4).t(); // The first row of C_tilde consists of the first 4 entries of the col-vector p_8
C_tilde.row(1) = p_8.rowRange(4, 8).t(); // Second row = last 4 entries
C_tilde.at<float>(2, 3) = 1; // the last row is [0 0 0 1]
Mat P_Affine = T.inv() * C_tilde * U;
return P_Affine;
}
cv::Vec2f projectAffine(cv::Vec4f vertex, cv::Mat affineCameraMatrix, int screenWidth, int screenHeight)
{
// Transform to clip space:
Mat clipCoords = affineCameraMatrix * Mat(vertex);
// Take the x and y coordinates in clip space and apply the window transform:
cv::Vec2f screenCoords = render::clipToScreenSpace(cv::Vec2f(clipCoords.rowRange(0, 2)), screenWidth, screenHeight);
return screenCoords;
}
} /* namespace fitting */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: src/eos/fitting/LinearShapeFitting.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/fitting/LinearShapeFitting.hpp"
#include "eos/render/utils.hpp"
#include <cassert>
using eos::morphablemodel::MorphableModel;
using cv::Mat;
using std::vector;
namespace eos {
namespace fitting {
vector<float> fitShapeToLandmarksLinear(MorphableModel morphableModel, Mat affineCameraMatrix, vector<cv::Vec2f> landmarks, std::vector<int> vertexIds, float lambda/*=20.0f*/, boost::optional<int> numCoefficientsToFit/*=boost::optional<int>()*/, boost::optional<float> detectorStandardDeviation/*=boost::optional<float>()*/, boost::optional<float> modelStandardDeviation/*=boost::optional<float>()*/)
{
assert(landmarks.size() == vertexIds.size());
int numCoeffsToFit = numCoefficientsToFit.get_value_or(morphableModel.getShapeModel().getNumberOfPrincipalComponents());
// $\hat{V} \in R^{3N\times m-1}$, subselect the rows of the eigenvector matrix $V$ associated with the $N$ feature points
// And we insert a row of zeros after every third row, resulting in matrix $\hat{V}_h \in R^{4N\times m-1}$:
Mat V_hat_h = Mat::zeros(4 * landmarks.size(), numCoeffsToFit, CV_32FC1);
int rowIndex = 0;
for (int i = 0; i < landmarks.size(); ++i) {
Mat basisRows = morphableModel.getShapeModel().getNormalisedPcaBasis(vertexIds[i]); // In the paper, the not-normalised basis might be used? I'm not sure, check it. It's even a mess in the paper. PH 26.5.2014: I think the normalised basis is fine/better.
//basisRows.copyTo(V_hat_h.rowRange(rowIndex, rowIndex + 3));
basisRows.colRange(0, numCoeffsToFit).copyTo(V_hat_h.rowRange(rowIndex, rowIndex + 3));
rowIndex += 4; // replace 3 rows and skip the 4th one, it has all zeros
}
// Form a block diagonal matrix $P \in R^{3N\times 4N}$ in which the camera matrix C (P_Affine, affineCam) is placed on the diagonal:
Mat P = Mat::zeros(3 * landmarks.size(), 4 * landmarks.size(), CV_32FC1);
for (int i = 0; i < landmarks.size(); ++i) {
Mat submatrixToReplace = P.colRange(4 * i, (4 * i) + 4).rowRange(3 * i, (3 * i) + 3);
affineCameraMatrix.copyTo(submatrixToReplace);
}
// The variances: Add the 2D and 3D standard deviations.
// If the user doesn't provide them, we choose the following:
// 2D (detector) variance: Assuming the detector has a standard deviation of 3 pixels, and the face size (IED) is around 80px. That's 3.75% of the IED. Assume that an image is on average 512x512px so 80/512 = 0.16 is the size the IED occupies inside an image.
// Now we're in clip-coords ([-1, 1]) and take 0.16 of the range [-1, 1], 0.16/2 = 0.08, and then the standard deviation of the detector is 3.75% of 0.08, i.e. 0.0375*0.08 = 0.003.
// 3D (model) variance: 0.0f. It only makes sense to set it to something when we have a different variance for different vertices.
float sigma_2D_3D = detectorStandardDeviation.get_value_or(0.003f) + modelStandardDeviation.get_value_or(0.0f);
// Note: Isn't it a bit strange to add these as they have different units/normalisations? Check the paper.
Mat Sigma = Mat::zeros(3 * landmarks.size(), 3 * landmarks.size(), CV_32FC1);
for (int i = 0; i < 3 * landmarks.size(); ++i) {
Sigma.at<float>(i, i) = 1.0f / sigma_2D_3D; // the higher the sigma_2D_3D, the smaller the diagonal entries of Sigma will be
}
Mat Omega = Sigma.t() * Sigma; // just squares the diagonal
// The landmarks in matrix notation (in homogeneous coordinates), $3N\times 1$
Mat y = Mat::ones(3 * landmarks.size(), 1, CV_32FC1);
for (int i = 0; i < landmarks.size(); ++i) {
y.at<float>(3 * i, 0) = landmarks[i][0];
y.at<float>((3 * i) + 1, 0) = landmarks[i][1];
//y.at<float>((3 * i) + 2, 0) = 1; // already 1, stays (homogeneous coordinate)
}
// The mean, with an added homogeneous coordinate (x_1, y_1, z_1, 1, x_2, ...)^t
Mat v_bar = Mat::ones(4 * landmarks.size(), 1, CV_32FC1);
for (int i = 0; i < landmarks.size(); ++i) {
cv::Vec4f modelMean = morphableModel.getShapeModel().getMeanAtPoint(vertexIds[i]);
v_bar.at<float>(4 * i, 0) = modelMean[0];
v_bar.at<float>((4 * i) + 1, 0) = modelMean[1];
v_bar.at<float>((4 * i) + 2, 0) = modelMean[2];
//v_bar.at<float>((4 * i) + 3, 0) = 1; // already 1, stays (homogeneous coordinate)
// note: now that a Vec4f is returned, we could use copyTo?
}
// Bring into standard regularised quadratic form with diagonal distance matrix Omega
Mat A = P * V_hat_h; // camera matrix times the basis
Mat b = P * v_bar - y; // camera matrix times the mean, minus the landmarks.
//Mat c_s; // The x, we solve for this! (the variance-normalised shape parameter vector, $c_s = [a_1/sigma_{s,1} , ..., a_m-1/sigma_{s,m-1}]^t$
//int numShapePc = morphableModel.getShapeModel().getNumberOfPrincipalComponents();
int numShapePc = numCoeffsToFit;
Mat AtOmegaA = A.t() * Omega * A;
Mat AtOmegaAReg = AtOmegaA + lambda * Mat::eye(numShapePc, numShapePc, CV_32FC1);
// Invert using OpenCV:
Mat AtOmegaARegInv = AtOmegaAReg.inv(cv::DECOMP_SVD); // DECOMP_SVD calculates the pseudo-inverse if the matrix is not invertible.
// Invert (and perform some sanity checks) using Eigen:
/*
Eigen::Map<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> AtOmegaAReg_Eigen(AtOmegaAReg.ptr<float>(), AtOmegaAReg.rows, AtOmegaAReg.cols);
Eigen::FullPivLU<Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor>> luOfAtOmegaAReg(AtOmegaAReg_Eigen); // Calculate the full-pivoting LU decomposition of the regularized AtA. Note: We could also try FullPivHouseholderQR if our system is non-minimal (i.e. there are more constraints than unknowns).
float rankOfAtOmegaAReg = luOfAtOmegaAReg.rank();
bool isAtOmegaARegInvertible = luOfAtOmegaAReg.isInvertible();
Eigen::Matrix<float, Eigen::Dynamic, Eigen::Dynamic, Eigen::RowMajor> AtARegInv_EigenFullLU = luOfAtOmegaAReg.inverse();
Mat AtOmegaARegInvFullLU(AtARegInv_EigenFullLU.rows(), AtARegInv_EigenFullLU.cols(), CV_32FC1, AtARegInv_EigenFullLU.data()); // create an OpenCV Mat header for the Eigen data
*/
Mat AtOmegatb = A.t() * Omega.t() * b;
Mat c_s = -AtOmegaARegInv * AtOmegatb; // Note/Todo: We get coefficients ~ N(0, sigma) I think. They are not multiplied with the eigenvalues.
return vector<float>(c_s);
}
} /* namespace fitting */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/morphablemodel/MorphableModel.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/morphablemodel/MorphableModel.hpp"
#include "opencv2/core/core.hpp"
#include <iostream>
using cv::Mat;
using cv::Vec2f;
using cv::Vec3f;
using cv::Vec4f;
using std::vector;
using std::array;
namespace {
/**
* Internal helper function that creates a Mesh from given shape and color
* PCA instances. Needs the vertex index lists as well to assemble the mesh -
* and optional texture coordinates.
*
* @param[in] shape PCA shape model instance.
* @param[in] color PCA color model instance.
* @param[in] tvi Triangle vertex indices.
* @param[in] tci Triangle color indices (usually identical to the vertex indices).
* @param[in] textureCoordinates Optional texture coordinates for each vertex.
* @return A mesh created from given parameters.
*/
eos::render::Mesh sampleToMesh(Mat shape, Mat color, vector<array<int, 3>> tvi, vector<array<int, 3>> tci, vector<Vec2f> textureCoordinates = vector<Vec2f>())
{
assert(shape.rows == color.rows); // The number of vertices (= model.getDataDimension() / 3) has to be equal for both models.
auto numVertices = shape.rows / 3;
eos::render::Mesh mesh;
// Construct the mesh vertices and vertex color information:
mesh.vertices.resize(numVertices);
mesh.colors.resize(numVertices);
for (auto i = 0; i < numVertices; ++i) {
mesh.vertices[i] = Vec4f(shape.at<float>(i * 3 + 0), shape.at<float>(i * 3 + 1), shape.at<float>(i * 3 + 2), 1.0f);
mesh.colors[i] = Vec3f(color.at<float>(i * 3 + 0), color.at<float>(i * 3 + 1), color.at<float>(i * 3 + 2)); // order in hdf5: RGB. Order in OCV: BGR. But order in vertex.color: RGB
}
// Assign the triangle lists:
mesh.tvi = tvi;
mesh.tci = tci;
// Texture coordinates, if the model has them:
if (!textureCoordinates.empty()) {
mesh.texcoords.resize(numVertices);
for (auto i = 0; i < numVertices; ++i) {
mesh.texcoords[i] = textureCoordinates[i];
}
}
return mesh;
}
} /* unnamed namespace */
namespace eos {
namespace morphablemodel {
MorphableModel::MorphableModel(PcaModel shapeModel, PcaModel colorModel, std::vector<cv::Vec2f> textureCoordinates /*= std::vector<cv::Vec2f>()*/) : shapeModel(shapeModel), colorModel(colorModel), textureCoordinates(textureCoordinates)
{
}
PcaModel MorphableModel::getShapeModel() const
{
return shapeModel;
}
PcaModel MorphableModel::getColorModel() const
{
return colorModel;
}
render::Mesh MorphableModel::getMean() const
{
assert(shapeModel.getDataDimension() == colorModel.getDataDimension()); // The number of vertices (= model.getDataDimension() / 3) has to be equal for both models.
Mat shape = shapeModel.getMean();
Mat color = colorModel.getMean();
render::Mesh mesh;
if (hasTextureCoordinates()) {
mesh = sampleToMesh(shape, color, shapeModel.getTriangleList(), colorModel.getTriangleList(), textureCoordinates);
}
else {
mesh = sampleToMesh(shape, color, shapeModel.getTriangleList(), colorModel.getTriangleList());
}
return mesh;
}
render::Mesh MorphableModel::drawSample(float shapeSigma /*= 1.0f*/, float colorSigma /*= 1.0f*/)
{
assert(shapeModel.getDataDimension() == colorModel.getDataDimension()); // The number of vertices (= model.getDataDimension() / 3) has to be equal for both models.
Mat shapeSample = shapeModel.drawSample(shapeSigma);
Mat colorSample = colorModel.drawSample(colorSigma);
render::Mesh mesh;
if (hasTextureCoordinates()) {
mesh = sampleToMesh(shapeSample, colorSample, shapeModel.getTriangleList(), colorModel.getTriangleList(), textureCoordinates);
}
else {
mesh = sampleToMesh(shapeSample, colorSample, shapeModel.getTriangleList(), colorModel.getTriangleList());
}
return mesh;
}
render::Mesh MorphableModel::drawSample(vector<float> shapeCoefficients, vector<float> colorCoefficients)
{
assert(shapeModel.getDataDimension() == colorModel.getDataDimension()); // The number of vertices (= model.getDataDimension() / 3) has to be equal for both models.
Mat shapeSample;
Mat colorSample;
if (shapeCoefficients.empty()) {
shapeSample = shapeModel.getMean();
} else {
shapeSample = shapeModel.drawSample(shapeCoefficients);
}
if (colorCoefficients.empty()) {
colorSample = colorModel.getMean();
} else {
colorSample = colorModel.drawSample(colorCoefficients);
}
render::Mesh mesh;
if (hasTextureCoordinates()) {
mesh = sampleToMesh(shapeSample, colorSample, shapeModel.getTriangleList(), colorModel.getTriangleList(), textureCoordinates);
}
else {
mesh = sampleToMesh(shapeSample, colorSample, shapeModel.getTriangleList(), colorModel.getTriangleList());
}
return mesh;
}
} /* namespace morphablemodel */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/morphablemodel/PcaModel.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/morphablemodel/PcaModel.hpp"
#include "boost/lexical_cast.hpp"
#include "boost/algorithm/string.hpp"
#include <fstream>
using cv::Mat;
using cv::Vec4f;
using boost::lexical_cast;
using boost::filesystem::path;
using std::string;
using std::vector;
using std::array;
namespace eos {
namespace morphablemodel {
PcaModel::PcaModel(Mat mean, Mat pcaBasis, Mat eigenvalues, vector<array<int, 3>> triangleList) : mean(mean), normalisedPcaBasis(pcaBasis), eigenvalues(eigenvalues), triangleList(triangleList)
{
const auto seed = std::random_device()();
engine.seed(seed);
unnormalisedPcaBasis = unnormalisePcaBasis(normalisedPcaBasis, eigenvalues);
}
int PcaModel::getNumberOfPrincipalComponents() const
{
// Note: we could assert(normalisedPcaBasis.cols==unnormalisedPcaBasis.cols)
return normalisedPcaBasis.cols;
}
int PcaModel::getDataDimension() const
{
// Note: we could assert(normalisedPcaBasis.rows==unnormalisedPcaBasis.rows)
return normalisedPcaBasis.rows;
}
std::vector<std::array<int, 3>> PcaModel::getTriangleList() const
{
return triangleList;
}
Mat PcaModel::getMean() const
{
return mean;
}
Vec4f PcaModel::getMeanAtPoint(int vertexIndex) const
{
vertexIndex *= 3;
if (vertexIndex >= mean.rows) {
throw std::out_of_range("The given vertex id is larger than the dimension of the mean.");
}
return Vec4f(mean.at<float>(vertexIndex), mean.at<float>(vertexIndex+1), mean.at<float>(vertexIndex+2), 1.0f);
}
Mat PcaModel::drawSample(float sigma/*=1.0f*/)
{
std::normal_distribution<float> distribution(0.0f, sigma); // this constructor takes the stddev
vector<float> alphas(getNumberOfPrincipalComponents());
for (auto&& a : alphas) {
a = distribution(engine);
}
return drawSample(alphas);
}
Mat PcaModel::drawSample(vector<float> coefficients)
{
// Fill the rest with zeros if not all coefficients are given:
if (coefficients.size() < getNumberOfPrincipalComponents()) {
coefficients.resize(getNumberOfPrincipalComponents());
}
Mat alphas(coefficients);
Mat modelSample = mean + normalisedPcaBasis * alphas;
return modelSample;
}
cv::Mat PcaModel::getNormalisedPcaBasis() const
{
return normalisedPcaBasis.clone();
}
cv::Mat PcaModel::getNormalisedPcaBasis(int vertexId) const
{
vertexId *= 3; // the basis is stored in the format [x y z x y z ...]
return normalisedPcaBasis.rowRange(vertexId, vertexId + 3);
}
cv::Mat PcaModel::getUnnormalisedPcaBasis() const
{
return unnormalisedPcaBasis.clone();
}
cv::Mat PcaModel::getUnnormalisedPcaBasis(int vertexId) const
{
vertexId *= 3; // the basis is stored in the format [x y z x y z ...]
return unnormalisedPcaBasis.rowRange(vertexId, vertexId + 3);
}
float PcaModel::getEigenvalue(int index) const
{
return eigenvalues.at<float>(index);
}
cv::Mat normalisePcaBasis(cv::Mat unnormalisedBasis, cv::Mat eigenvalues)
{
Mat normalisedPcaBasis(unnormalisedBasis.size(), unnormalisedBasis.type()); // empty matrix with the same dimensions
Mat sqrtOfEigenvalues = eigenvalues.clone();
for (int i = 0; i < eigenvalues.rows; ++i) {
sqrtOfEigenvalues.at<float>(i) = std::sqrt(eigenvalues.at<float>(i));
}
// Normalise the basis: We multiply each eigenvector (i.e. each column) with the square root of its corresponding eigenvalue
for (int basis = 0; basis < unnormalisedBasis.cols; ++basis) {
Mat normalisedEigenvector = unnormalisedBasis.col(basis).mul(sqrtOfEigenvalues.at<float>(basis));
normalisedEigenvector.copyTo(normalisedPcaBasis.col(basis));
}
return normalisedPcaBasis;
}
cv::Mat unnormalisePcaBasis(cv::Mat normalisedBasis, cv::Mat eigenvalues)
{
Mat unnormalisedBasis(normalisedBasis.size(), normalisedBasis.type()); // empty matrix with the same dimensions
Mat oneOverSqrtOfEigenvalues = eigenvalues.clone();
for (int i = 0; i < eigenvalues.rows; ++i) {
oneOverSqrtOfEigenvalues.at<float>(i) = 1.0f / std::sqrt(eigenvalues.at<float>(i));
}
// De-normalise the basis: We multiply each eigenvector (i.e. each column) with 1 over the square root of its corresponding eigenvalue
for (int basis = 0; basis < normalisedBasis.cols; ++basis) {
Mat unnormalisedEigenvector = normalisedBasis.col(basis).mul(oneOverSqrtOfEigenvalues.at<float>(basis));
unnormalisedEigenvector.copyTo(unnormalisedBasis.col(basis));
}
return unnormalisedBasis;
}
} /* namespace morphablemodel */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: src/eos/morphablemodel/io/cvssp.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/morphablemodel/io/cvssp.hpp"
#include "boost/lexical_cast.hpp"
#include "boost/algorithm/string.hpp"
#include <fstream>
#include <iostream>
namespace fs = boost::filesystem;
using cv::Mat;
using cv::Vec2f;
using cv::Vec3f;
using boost::lexical_cast;
using std::string;
using std::vector;
using std::array;
namespace eos {
namespace morphablemodel {
MorphableModel loadScmModel(fs::path modelFilename, fs::path isomapFile)
{
if (sizeof(unsigned int) != 4) { // note/todo: maybe use uint32 or similar instead? Yep, but still we could encounter endianness-trouble.
std::cout << "Warning: We're reading 4 Bytes from the file but sizeof(unsigned int) != 4. Check the code/behaviour." << std::endl;
}
if (sizeof(double) != 8) {
std::cout << "Warning: We're reading 8 Bytes from the file but sizeof(double) != 8. Check the code/behaviour." << std::endl;
}
std::ifstream modelFile(modelFilename.string(), std::ios::binary);
if (!modelFile.is_open()) {
std::string msg("Unable to open model file: " + modelFilename.string());
std::cout << msg << std::endl;
throw std::runtime_error(msg);
}
// Reading the shape model
// Read (reference?) num triangles and vertices
unsigned int numVertices = 0;
unsigned int numTriangles = 0;
modelFile.read(reinterpret_cast<char*>(&numVertices), 4); // 1 char = 1 byte. uint32=4bytes. float64=8bytes.
modelFile.read(reinterpret_cast<char*>(&numTriangles), 4);
// Read triangles
vector<array<int, 3>> triangleList;
triangleList.resize(numTriangles);
unsigned int v0, v1, v2;
for (unsigned int i=0; i < numTriangles; ++i) {
v0 = v1 = v2 = 0;
modelFile.read(reinterpret_cast<char*>(&v0), 4); // would be nice to pass a &vector and do it in one
modelFile.read(reinterpret_cast<char*>(&v1), 4); // go, but didn't work. Maybe a cv::Mat would work?
modelFile.read(reinterpret_cast<char*>(&v2), 4);
triangleList[i][0] = v0;
triangleList[i][1] = v1;
triangleList[i][2] = v2;
}
// Read number of rows and columns of the shape projection matrix (pcaBasis)
unsigned int numShapePcaCoeffs = 0;
unsigned int numShapeDims = 0; // dimension of the shape vector (3*numVertices)
modelFile.read(reinterpret_cast<char*>(&numShapePcaCoeffs), 4);
modelFile.read(reinterpret_cast<char*>(&numShapeDims), 4);
if (3 * numVertices != numShapeDims) {
std::cout << "Warning: Number of shape dimensions is not equal to three times the number of vertices. Something will probably go wrong during the loading." << std::endl;
}
// Read shape projection matrix
Mat unnormalisedPcaBasisShape(numShapeDims, numShapePcaCoeffs, CV_32FC1); // m x n (rows x cols) = numShapeDims x numShapePcaCoeffs
std::cout << "Loading shape PCA basis matrix with " << unnormalisedPcaBasisShape.rows << " rows and " << unnormalisedPcaBasisShape.cols << " cols." << std::endl;
for (unsigned int col = 0; col < numShapePcaCoeffs; ++col) {
for (unsigned int row = 0; row < numShapeDims; ++row) {
double var = 0.0;
modelFile.read(reinterpret_cast<char*>(&var), 8);
unnormalisedPcaBasisShape.at<float>(row, col) = static_cast<float>(var);
}
}
// Read mean shape vector
unsigned int numMean = 0; // dimension of the mean (3*numVertices)
modelFile.read(reinterpret_cast<char*>(&numMean), 4);
if (numMean != numShapeDims) {
std::cout << "Warning: Number of shape dimensions is not equal to the number of dimensions of the mean. Something will probably go wrong during the loading." << std::endl;
}
Mat meanShape(numMean, 1, CV_32FC1);
unsigned int counter = 0;
double vd0, vd1, vd2;
for (unsigned int i=0; i < numMean/3; ++i) {
vd0 = vd1 = vd2 = 0.0;
modelFile.read(reinterpret_cast<char*>(&vd0), 8);
modelFile.read(reinterpret_cast<char*>(&vd1), 8);
modelFile.read(reinterpret_cast<char*>(&vd2), 8);
meanShape.at<float>(counter, 0) = static_cast<float>(vd0);
++counter;
meanShape.at<float>(counter, 0) = static_cast<float>(vd1);
++counter;
meanShape.at<float>(counter, 0) = static_cast<float>(vd2);
++counter;
}
// Read shape eigenvalues
unsigned int numEigenValsShape = 0;
modelFile.read(reinterpret_cast<char*>(&numEigenValsShape), 4);
if (numEigenValsShape != numShapePcaCoeffs) {
std::cout << "Warning: Number of coefficients in the PCA basis matrix is not equal to the number of eigenvalues. Something will probably go wrong during the loading." << std::endl;
}
Mat eigenvaluesShape(numEigenValsShape, 1, CV_32FC1);
for (unsigned int i=0; i < numEigenValsShape; ++i) {
double var = 0.0;
modelFile.read(reinterpret_cast<char*>(&var), 8);
eigenvaluesShape.at<float>(i, 0) = static_cast<float>(var);
}
// We read the unnormalised basis from the file. Now let's normalise it and store the normalised basis separately.
Mat normalisedPcaBasisShape = normalisePcaBasis(unnormalisedPcaBasisShape, eigenvaluesShape);
PcaModel shapeModel(meanShape, normalisedPcaBasisShape, eigenvaluesShape, triangleList);
// Reading the color model
// Read number of rows and columns of projection matrix
unsigned int numTexturePcaCoeffs = 0;
unsigned int numTextureDims = 0;
modelFile.read(reinterpret_cast<char*>(&numTexturePcaCoeffs), 4);
modelFile.read(reinterpret_cast<char*>(&numTextureDims), 4);
// Read color projection matrix
Mat unnormalisedPcaBasisColor(numTextureDims, numTexturePcaCoeffs, CV_32FC1);
std::cout << "Loading color PCA basis matrix with " << unnormalisedPcaBasisColor.rows << " rows and " << unnormalisedPcaBasisColor.cols << " cols." << std::endl;
for (unsigned int col = 0; col < numTexturePcaCoeffs; ++col) {
for (unsigned int row = 0; row < numTextureDims; ++row) {
double var = 0.0;
modelFile.read(reinterpret_cast<char*>(&var), 8);
unnormalisedPcaBasisColor.at<float>(row, col) = static_cast<float>(var);
}
}
// Read mean color vector
unsigned int numMeanColor = 0; // dimension of the mean (3*numVertices)
modelFile.read(reinterpret_cast<char*>(&numMeanColor), 4);
Mat meanColor(numMeanColor, 1, CV_32FC1);
counter = 0;
for (unsigned int i=0; i < numMeanColor/3; ++i) {
vd0 = vd1 = vd2 = 0.0;
modelFile.read(reinterpret_cast<char*>(&vd0), 8); // order in hdf5: RGB. Order in OCV: BGR. But order in vertex.color: RGB
modelFile.read(reinterpret_cast<char*>(&vd1), 8);
modelFile.read(reinterpret_cast<char*>(&vd2), 8);
meanColor.at<float>(counter, 0) = static_cast<float>(vd0);
++counter;
meanColor.at<float>(counter, 0) = static_cast<float>(vd1);
++counter;
meanColor.at<float>(counter, 0) = static_cast<float>(vd2);
++counter;
}
// Read color eigenvalues
unsigned int numEigenValsColor = 0;
modelFile.read(reinterpret_cast<char*>(&numEigenValsColor), 4);
Mat eigenvaluesColor(numEigenValsColor, 1, CV_32FC1);
for (unsigned int i=0; i < numEigenValsColor; ++i) {
double var = 0.0;
modelFile.read(reinterpret_cast<char*>(&var), 8);
eigenvaluesColor.at<float>(i, 0) = static_cast<float>(var);
}
// We read the unnormalised basis from the file. Now let's normalise it and store the normalised basis separately.
Mat normalisedPcaBasisColor = normalisePcaBasis(unnormalisedPcaBasisColor, eigenvaluesColor);
PcaModel colorModel(meanColor, normalisedPcaBasisColor, eigenvaluesColor, triangleList);
modelFile.close();
// Load the isomap with texture coordinates if a filename has been given:
vector<Vec2f> texCoords;
if (!isomapFile.empty()) {
texCoords = loadIsomap(isomapFile);
if (shapeModel.getDataDimension() / 3.0f != texCoords.size()) {
std::string errorMessage("Error, wrong number of texture coordinates. Don't have the same number of texcoords than the shape model has vertices.");
std::cout << errorMessage << std::endl;
throw std::runtime_error(errorMessage);
}
}
return MorphableModel(shapeModel, colorModel, texCoords);
}
vector<Vec2f> loadIsomap(fs::path isomapFile)
{
vector<float> xCoords, yCoords;
string line;
std::ifstream myfile(isomapFile.string());
if (!myfile.is_open()) {
string logMessage("The Isomap file could not be opened. Did you specify a correct filename? " + isomapFile.string());
std::cout << logMessage << std::endl;
throw std::runtime_error(logMessage);
}
else {
while (getline(myfile, line))
{
std::istringstream iss(line);
string x, y;
iss >> x >> y;
xCoords.push_back(lexical_cast<float>(x));
yCoords.push_back(lexical_cast<float>(y));
}
myfile.close();
}
// Process the coordinates: Find the min/max and rescale to [0, 1] x [0, 1]
auto minMaxX = std::minmax_element(begin(xCoords), end(xCoords)); // minMaxX is a pair, first=min, second=max
auto minMaxY = std::minmax_element(begin(yCoords), end(yCoords));
vector<Vec2f> texCoords;
float divisorX = *minMaxX.second - *minMaxX.first;
float divisorY = *minMaxY.second - *minMaxY.first;
for (int i = 0; i < xCoords.size(); ++i) {
texCoords.push_back(Vec2f((xCoords[i] - *minMaxX.first) / divisorX, 1.0f - (yCoords[i] - *minMaxY.first) / divisorY)); // We rescale to [0, 1] and at the same time flip the y-coords (because in the isomap, the coordinates are stored upside-down).
}
return texCoords;
}
} /* namespace morphablemodel */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: src/eos/render/Mesh.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/render/Mesh.hpp"
#include <cassert>
#include <fstream>
namespace eos {
namespace render {
void writeObj(Mesh mesh, std::string filename)
{
std::ofstream objFile(filename);
assert(mesh.vertices.size() == mesh.colors.size());
for (std::size_t i = 0; i < mesh.vertices.size(); ++i) {
objFile << "v " << mesh.vertices[i][0] << " " << mesh.vertices[i][1] << " " << mesh.vertices[i][2] << " " << mesh.colors[i][0] << " " << mesh.colors[i][1] << " " << mesh.colors[i][2] << " " << std::endl;
}
for (auto&& v : mesh.tvi) {
// Add one because obj starts counting triangle indices at 1
objFile << "f " << v[0] + 1 << " " << v[1] + 1 << " " << v[2] + 1 << std::endl;
}
return;
}
} /* namespace render */
} /* namespace eos */
/*
* Eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: src/eos/render/utils.cpp
*
* Copyright 2014, 2015 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "eos/render/utils.hpp"
using cv::Vec2f;
namespace eos {
namespace render {
Vec2f clipToScreenSpace(Vec2f clipCoordinates, int screenWidth, int screenHeight)
{
// Window transform:
float x_ss = (clipCoordinates[0] + 1.0f) * (screenWidth / 2.0f);
float y_ss = screenHeight - (clipCoordinates[1] + 1.0f) * (screenHeight / 2.0f); // also flip y; Qt: Origin top-left. OpenGL: bottom-left.
return Vec2f(x_ss, y_ss);
/* Note: What we do here is equivalent to
x_w = (x * vW/2) + vW/2;
However, Shirley says we should do:
x_w = (x * vW/2) + (vW-1)/2;
(analogous for y)
Todo: Check the consequences.
*/
}
Vec2f screenToClipSpace(Vec2f screenCoordinates, int screenWidth, int screenHeight)
{
float x_cs = screenCoordinates[0] / (screenWidth / 2.0f) - 1.0f;
float y_cs = screenCoordinates[1] / (screenHeight / 2.0f) - 1.0f;
y_cs *= -1.0f;
return Vec2f(x_cs, y_cs);
}
} /* namespace render */
} /* namespace eos */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment