Commit 93134884 authored by Patrik Huber's avatar Patrik Huber

Added the cereal serialisation library to 3rdparty/

parent 185fdc08
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
cereal - A C++11 library for serialization
==========================================
<img src="http://uscilab.github.io/cereal/assets/img/cerealboxside.png" align="right"/><p>cereal is a header-only C++11 serialization library. cereal takes arbitrary data types and reversibly turns them into different representations, such as compact binary encodings, XML, or JSON. cereal was designed to be fast, light-weight, and easy to extend - it has no external dependencies and can be easily bundled with other code or used standalone.</p>
### cereal has great documentation
Looking for more information on how cereal works and its documentation? Visit [cereal's web page](http://USCiLab.github.com/cereal) to get the latest information.
### cereal is easy to use
Installation and use of of cereal is fully documented on the [main web page](http://USCiLab.github.com/cereal), but this is a quick and dirty version:
* Download cereal and place the headers somewhere your code can see them
* Write serialization functions for your custom types or use the built in support for the standard library cereal provides
* Use the serialization archives to load and save data
```cpp
#include <cereal/types/unordered_map.hpp>
#include <cereal/types/memory.hpp>
#include <cereal/archives/binary.hpp>
#include <fstream>
struct MyRecord
{
uint8_t x, y;
float z;
template <class Archive>
void serialize( Archive & ar )
{
ar( x, y, z );
}
};
struct SomeData
{
int32_t id;
std::shared_ptr<std::unordered_map<uint32_t, MyRecord>> data;
template <class Archive>
void save( Archive & ar ) const
{
ar( data );
}
template <class Archive>
void load( Archive & ar )
{
static int32_t idGen = 0;
id = idGen++;
ar( data );
}
};
int main()
{
std::ofstream os("out.cereal", std::ios::binary);
cereal::BinaryOutputArchive archive( os );
SomeData myData;
archive( myData );
return 0;
}
```
### cereal has a mailing list
Either get in touch over <a href="mailto:cerealcpp@googlegroups.com">email</a> or [on the web](https://groups.google.com/forum/#!forum/cerealcpp).
## cereal has a permissive license
cereal is licensed under the [BSD license](http://opensource.org/licenses/BSD-3-Clause).
## cereal build status
* develop : [![Build Status](https://travis-ci.org/USCiLab/cereal.png?branch=develop)](https://travis-ci.org/USCiLab/cereal)
---
Were you looking for the Haskell cereal? Go <a href="https://github.com/GaloisInc/cereal">here</a>.
/*! \file access.hpp
\brief Access control, default construction, and serialization disambiguation */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ACCESS_HPP_
#define CEREAL_ACCESS_HPP_
#include <type_traits>
#include <iostream>
#include <cstdint>
#include <cereal/macros.hpp>
#include <cereal/details/helpers.hpp>
namespace cereal
{
// ######################################################################
//! A class that allows cereal to load smart pointers to types that have no default constructor
/*! If your class does not have a default constructor, cereal will not be able
to load any smart pointers to it unless you overload LoadAndConstruct
for your class, and provide an appropriate load_and_construct method. You can also
choose to define a member static function instead of specializing this class.
The specialization of LoadAndConstruct must be placed within the cereal namespace:
@code{.cpp}
struct MyType
{
MyType( int x ); // note: no default ctor
int myX;
// Define a serialize or load/save pair as you normally would
template <class Archive>
void serialize( Archive & ar )
{
ar( myX );
}
};
// Provide a specialization for LoadAndConstruct for your type
namespace cereal
{
template <> struct LoadAndConstruct<MyType>
{
// load_and_construct will be passed the archive that you will be loading
// from as well as a construct object which you can use as if it were the
// constructor for your type. cereal will handle all memory management for you.
template <class Archive>
static void load_and_construct( Archive & ar, cereal::construct<MyType> & construct )
{
int x;
ar( x );
construct( x );
}
};
} // end namespace cereal
@endcode
Please note that just as in using external serialization functions, you cannot get
access to non-public members of your class by befriending cereal::access. If you
have the ability to modify the class you wish to serialize, it is recommended that you
use member serialize functions and a static member load_and_construct function.
@tparam T The type to specialize for
@ingroup Access */
template <class T>
struct LoadAndConstruct
{
//! Called by cereal if no default constructor exists to load and construct data simultaneously
/*! Overloads of this should return a pointer to T and expect an archive as a parameter */
static std::false_type load_and_construct(...)
{ return std::false_type(); }
};
// forward decl for construct
//! @cond PRIVATE_NEVERDEFINED
namespace memory_detail{ template <class Ar, class T> struct LoadAndConstructLoadWrapper; }
//! @endcond
//! Used to construct types with no default constructor
/*! When serializing a type that has no default constructor, cereal
will attempt to call either the class static function load_and_construct
or the appropriate template specialization of LoadAndConstruct. cereal
will pass that function a reference to the archive as well as a reference
to a construct object which should be used to perform the allocation once
data has been appropriately loaded.
@code{.cpp}
struct MyType
{
// note the lack of default constructor
MyType( int xx, int yy );
int x, y;
double notInConstructor;
template <class Archive>
void serialize( Archive & ar )
{
ar( x, y );
ar( notInConstructor );
}
template <class Archive>
static void load_and_construct( Archive & ar, cereal::construct<MyType> & construct )
{
int x, y;
ar( x, y );
// use construct object to initialize with loaded data
construct( x, y );
// access to member variables and functions via -> operator
ar( construct->notInConstructor );
// could also do the above section by:
double z;
ar( z );
construct->notInConstructor = z;
}
};
@endcode
@tparam T The class type being serialized
*/
template <class T>
class construct
{
public:
//! Construct and initialize the type T with the given arguments
/*! This will forward all arguments to the underlying type T,
calling an appropriate constructor.
Calling this function more than once will result in an exception
being thrown.
@param args The arguments to the constructor for T
@throw Exception If called more than once */
template <class ... Args>
void operator()( Args && ... args );
// implementation deferred due to reliance on cereal::access
//! Get a reference to the initialized underlying object
/*! This must be called after the object has been initialized.
@return A reference to the initialized object
@throw Exception If called before initialization */
T * operator->()
{
if( !itsValid )
throw Exception("Object must be initialized prior to accessing members");
return itsPtr;
}
//! Returns a raw pointer to the initialized underlying object
/*! This is mainly intended for use with passing an instance of
a constructed object to cereal::base_class.
It is strongly recommended to avoid using this function in
any other circumstance.
@return A raw pointer to the initialized type */
T * ptr()
{
return operator->();
}
private:
template <class A, class B> friend struct ::cereal::memory_detail::LoadAndConstructLoadWrapper;
construct( T * p ) : itsPtr( p ), itsValid( false ) {}
construct( construct const & ) = delete;
construct & operator=( construct const & ) = delete;
T * itsPtr;
bool itsValid;
};
// ######################################################################
//! A class that can be made a friend to give cereal access to non public functions
/*! If you desire non-public serialization functions within a class, cereal can only
access these if you declare cereal::access a friend.
@code{.cpp}
class MyClass
{
private:
friend class cereal::access; // gives access to the private serialize
template <class Archive>
void serialize( Archive & ar )
{
// some code
}
};
@endcode
@ingroup Access */
class access
{
public:
// ####### Standard Serialization ########################################
template<class Archive, class T> inline
static auto member_serialize(Archive & ar, T & t) -> decltype(t.CEREAL_SERIALIZE_FUNCTION_NAME(ar))
{ return t.CEREAL_SERIALIZE_FUNCTION_NAME(ar); }
template<class Archive, class T> inline
static auto member_save(Archive & ar, T const & t) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar))
{ return t.CEREAL_SAVE_FUNCTION_NAME(ar); }
template<class Archive, class T> inline
static auto member_save_non_const(Archive & ar, T & t) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar))
{ return t.CEREAL_SAVE_FUNCTION_NAME(ar); }
template<class Archive, class T> inline
static auto member_load(Archive & ar, T & t) -> decltype(t.CEREAL_LOAD_FUNCTION_NAME(ar))
{ return t.CEREAL_LOAD_FUNCTION_NAME(ar); }
template<class Archive, class T> inline
static auto member_save_minimal(Archive const & ar, T const & t) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar))
{ return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar); }
template<class Archive, class T> inline
static auto member_save_minimal_non_const(Archive const & ar, T & t) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar))
{ return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar); }
template<class Archive, class T, class U> inline
static auto member_load_minimal(Archive const & ar, T & t, U && u) -> decltype(t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u)))
{ return t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u)); }
// ####### Versioned Serialization #######################################
template<class Archive, class T> inline
static auto member_serialize(Archive & ar, T & t, const std::uint32_t version ) -> decltype(t.CEREAL_SERIALIZE_FUNCTION_NAME(ar, version))
{ return t.CEREAL_SERIALIZE_FUNCTION_NAME(ar, version); }
template<class Archive, class T> inline
static auto member_save(Archive & ar, T const & t, const std::uint32_t version ) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar, version))
{ return t.CEREAL_SAVE_FUNCTION_NAME(ar, version); }
template<class Archive, class T> inline
static auto member_save_non_const(Archive & ar, T & t, const std::uint32_t version ) -> decltype(t.CEREAL_SAVE_FUNCTION_NAME(ar, version))
{ return t.CEREAL_SAVE_FUNCTION_NAME(ar, version); }
template<class Archive, class T> inline
static auto member_load(Archive & ar, T & t, const std::uint32_t version ) -> decltype(t.CEREAL_LOAD_FUNCTION_NAME(ar, version))
{ return t.CEREAL_LOAD_FUNCTION_NAME(ar, version); }
template<class Archive, class T> inline
static auto member_save_minimal(Archive const & ar, T const & t, const std::uint32_t version) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version))
{ return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version); }
template<class Archive, class T> inline
static auto member_save_minimal_non_const(Archive const & ar, T & t, const std::uint32_t version) -> decltype(t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version))
{ return t.CEREAL_SAVE_MINIMAL_FUNCTION_NAME(ar, version); }
template<class Archive, class T, class U> inline
static auto member_load_minimal(Archive const & ar, T & t, U && u, const std::uint32_t version) -> decltype(t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u), version))
{ return t.CEREAL_LOAD_MINIMAL_FUNCTION_NAME(ar, std::forward<U>(u), version); }
// ####### Other Functionality ##########################################
// for detecting inheritance from enable_shared_from_this
template <class T> inline
static auto shared_from_this(T & t) -> decltype(t.shared_from_this());
// for placement new
template <class T, class ... Args> inline
static void construct( T *& ptr, Args && ... args )
{
new (ptr) T( std::forward<Args>( args )... );
}
// for non-placement new with a default constructor
template <class T> inline
static T * construct()
{
return new T();
}
template <class T> inline
static std::false_type load_and_construct(...)
{ return std::false_type(); }
template<class T, class Archive> inline
static auto load_and_construct(Archive & ar, ::cereal::construct<T> & construct) -> decltype(T::load_and_construct(ar, construct))
{
T::load_and_construct( ar, construct );
}
}; // end class access
// ######################################################################
//! A specifier used in conjunction with cereal::specialize to disambiguate
//! serialization in special cases
/*! @relates specialize
@ingroup Access */
enum class specialization
{
member_serialize, //!< Force the use of a member serialize function
member_load_save, //!< Force the use of a member load/save pair
member_load_save_minimal, //!< Force the use of a member minimal load/save pair
non_member_serialize, //!< Force the use of a non-member serialize function
non_member_load_save, //!< Force the use of a non-member load/save pair
non_member_load_save_minimal //!< Force the use of a non-member minimal load/save pair
};
//! A class used to disambiguate cases where cereal cannot detect a unique way of serializing a class
/*! cereal attempts to figure out which method of serialization (member vs. non-member serialize
or load/save pair) at compile time. If for some reason cereal cannot find a non-ambiguous way
of serializing a type, it will produce a static assertion complaining about this.
This can happen because you have both a serialize and load/save pair, or even because a base
class has a serialize (public or private with friend access) and a derived class does not
overwrite this due to choosing some other serialization type.
Specializing this class will tell cereal to explicitly use the serialization type you specify
and it will not complain about ambiguity in its compile time selection. However, if cereal detects
an ambiguity in specializations, it will continue to issue a static assertion.
@code{.cpp}
class MyParent
{
friend class cereal::access;
template <class Archive>
void serialize( Archive & ar ) {}
};
// Although serialize is private in MyParent, to cereal::access it will look public,
// even through MyDerived
class MyDerived : public MyParent
{
public:
template <class Archive>
void load( Archive & ar ) {}
template <class Archive>
void save( Archive & ar ) {}
};
// The load/save pair in MyDerived is ambiguous because serialize in MyParent can
// be accessed from cereal::access. This looks the same as making serialize public
// in MyParent, making it seem as though MyDerived has both a serialize and a load/save pair.
// cereal will complain about this at compile time unless we disambiguate:
namespace cereal
{
// This struct specialization will tell cereal which is the right way to serialize the ambiguity
template <class Archive> struct specialize<Archive, MyDerived, cereal::specialization::member_load_save> {};
// If we only had a disambiguation for a specific archive type, it would look something like this
template <> struct specialize<cereal::BinaryOutputArchive, MyDerived, cereal::specialization::member_load_save> {};
}
@endcode
You can also choose to use the macros CEREAL_SPECIALIZE_FOR_ALL_ARCHIVES or
CEREAL_SPECIALIZE_FOR_ARCHIVE if you want to type a little bit less.
@tparam T The type to specialize the serialization for
@tparam S The specialization type to use for T
@ingroup Access */
template <class Archive, class T, specialization S>
struct specialize : public std::false_type {};
//! Convenient macro for performing specialization for all archive types
/*! This performs specialization for the specific type for all types of archives.
This macro should be placed at the global namespace.
@code{cpp}
struct MyType {};
CEREAL_SPECIALIZE_FOR_ALL_ARCHIVES( MyType, cereal::specialization::member_load_save );
@endcode
@relates specialize
@ingroup Access */
#define CEREAL_SPECIALIZE_FOR_ALL_ARCHIVES( Type, Specialization ) \
namespace cereal { template <class Archive> struct specialize<Archive, Type, Specialization> {}; }
//! Convenient macro for performing specialization for a single archive type
/*! This performs specialization for the specific type for a single type of archive.
This macro should be placed at the global namespace.
@code{cpp}
struct MyType {};
CEREAL_SPECIALIZE_FOR_ARCHIVE( cereal::XMLInputArchive, MyType, cereal::specialization::member_load_save );
@endcode
@relates specialize
@ingroup Access */
#define CEREAL_SPECIALIZE_FOR_ARCHIVE( Archive, Type, Specialization ) \
namespace cereal { template <> struct specialize<Archive, Type, Specialization> {}; }
// ######################################################################
// Deferred Implementation, see construct for more information
template <class T> template <class ... Args> inline
void construct<T>::operator()( Args && ... args )
{
if( itsValid )
throw Exception("Attempting to construct an already initialized object");
::cereal::access::construct( itsPtr, std::forward<Args>( args )... );
itsValid = true;
}
} // namespace cereal
#endif // CEREAL_ACCESS_HPP_
/*! \file adapters.hpp
\brief Archive adapters that provide additional functionality
on top of an existing archive */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ARCHIVES_ADAPTERS_HPP_
#define CEREAL_ARCHIVES_ADAPTERS_HPP_
#include <cereal/details/helpers.hpp>
#include <utility>
namespace cereal
{
#ifdef CEREAL_FUTURE_EXPERIMENTAL
// Forward declaration for friend access
template <class U, class A> U & get_user_data( A & );
//! Wraps an archive and gives access to user data
/*! This adapter is useful if you require access to
either raw pointers or references within your
serialization functions.
While cereal does not directly support serialization
raw pointers or references, it is sometimes the case
that you may want to supply something such as a raw
pointer or global reference to some constructor.
In this situation this adapter would likely be used
with the construct class to allow for non-default
constructors.
@note This feature is experimental and may be altered or removed in a future release. See issue #46.
@code{.cpp}
struct MyUserData
{
int * myRawPointer;
std::reference_wrapper<MyOtherType> myReference;
};
struct MyClass
{
// Note the raw pointer parameter
MyClass( int xx, int * rawP );
int x;
template <class Archive>
void serialize( Archive & ar )
{ ar( x ); }
template <class Archive>
static void load_and_construct( Archive & ar, cereal::construct<MyClass> & construct )
{
int xx;
ar( xx );
// note the need to use get_user_data to retrieve user data from the archive
construct( xx, cereal::get_user_data<MyUserData>( ar ).myRawPointer );
}
};
int main()
{
{
MyUserData md;
md.myRawPointer = &something;
md.myReference = someInstanceOfType;
std::ifstream is( "data.xml" );
cereal::UserDataAdapter<MyUserData, cereal::XMLInputArchive> ar( md, is );
std::unique_ptr<MyClass> sc;
ar( sc ); // use as normal
}
return 0;
}
@endcode
@relates get_user_data
@tparam UserData The type to give the archive access to
@tparam Archive The archive to wrap */
template <class UserData, class Archive>
class UserDataAdapter : public Archive
{
public:
//! Construct the archive with some user data struct
/*! This will forward all arguments (other than the user
data) to the wrapped archive type. The UserDataAdapter
can then be used identically to the wrapped archive type
@tparam Args The arguments to pass to the constructor of
the archive. */
template <class ... Args>
UserDataAdapter( UserData & ud, Args && ... args ) :
Archive( std::forward<Args>( args )... ),
userdata( ud )
{ }
private:
//! Overload the rtti function to enable dynamic_cast
void rtti() {}
friend UserData & get_user_data<UserData>( Archive & ar );
UserData & userdata; //!< The actual user data
};
//! Retrieves user data from an archive wrapped by UserDataAdapter
/*! This will attempt to retrieve the user data associated with
some archive wrapped by UserDataAdapter. If this is used on
an archive that is not wrapped, a run-time exception will occur.
@note This feature is experimental and may be altered or removed in a future release. See issue #46.
@note The correct use of this function cannot be enforced at compile
time.
@relates UserDataAdapter
@tparam UserData The data struct contained in the archive
@tparam Archive The archive, which should be wrapped by UserDataAdapter
@param ar The archive
@throws Exception if the archive this is used upon is not wrapped with
UserDataAdapter. */
template <class UserData, class Archive>
UserData & get_user_data( Archive & ar )
{
try
{
return dynamic_cast<UserDataAdapter<UserData, Archive> &>( ar ).userdata;
}
catch( std::bad_cast const & )
{
throw ::cereal::Exception("Attempting to get user data from archive not wrapped in UserDataAdapter");
}
}
#endif // CEREAL_FUTURE_EXPERIMENTAL
} // namespace cereal
#endif // CEREAL_ARCHIVES_ADAPTERS_HPP_
/*! \file binary.hpp
\brief Binary input and output archives */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ARCHIVES_BINARY_HPP_
#define CEREAL_ARCHIVES_BINARY_HPP_
#include <cereal/cereal.hpp>
#include <sstream>
namespace cereal
{
// ######################################################################
//! An output archive designed to save data in a compact binary representation
/*! This archive outputs data to a stream in an extremely compact binary
representation with as little extra metadata as possible.
This archive does nothing to ensure that the endianness of the saved
and loaded data is the same. If you need to have portability over
architectures with different endianness, use PortableBinaryOutputArchive.
When using a binary archive and a file stream, you must use the
std::ios::binary format flag to avoid having your data altered
inadvertently.
\ingroup Archives */
class BinaryOutputArchive : public OutputArchive<BinaryOutputArchive, AllowEmptyClassElision>
{
public:
//! Construct, outputting to the provided stream
/*! @param stream The stream to output to. Can be a stringstream, a file stream, or
even cout! */
BinaryOutputArchive(std::ostream & stream) :
OutputArchive<BinaryOutputArchive, AllowEmptyClassElision>(this),
itsStream(stream)
{ }
//! Writes size bytes of data to the output stream
void saveBinary( const void * data, std::size_t size )
{
auto const writtenSize = static_cast<std::size_t>( itsStream.rdbuf()->sputn( reinterpret_cast<const char*>( data ), size ) );
if(writtenSize != size)
throw Exception("Failed to write " + std::to_string(size) + " bytes to output stream! Wrote " + std::to_string(writtenSize));
}
private:
std::ostream & itsStream;
};
// ######################################################################
//! An input archive designed to load data saved using BinaryOutputArchive
/* This archive does nothing to ensure that the endianness of the saved
and loaded data is the same. If you need to have portability over
architectures with different endianness, use PortableBinaryOutputArchive.
When using a binary archive and a file stream, you must use the
std::ios::binary format flag to avoid having your data altered
inadvertently.
\ingroup Archives */
class BinaryInputArchive : public InputArchive<BinaryInputArchive, AllowEmptyClassElision>
{
public:
//! Construct, loading from the provided stream
BinaryInputArchive(std::istream & stream) :
InputArchive<BinaryInputArchive, AllowEmptyClassElision>(this),
itsStream(stream)
{ }
//! Reads size bytes of data from the input stream
void loadBinary( void * const data, std::size_t size )
{
auto const readSize = static_cast<std::size_t>( itsStream.rdbuf()->sgetn( reinterpret_cast<char*>( data ), size ) );
if(readSize != size)
throw Exception("Failed to read " + std::to_string(size) + " bytes from input stream! Read " + std::to_string(readSize));
}
private:
std::istream & itsStream;
};
// ######################################################################
// Common BinaryArchive serialization functions
//! Saving for POD types to binary
template<class T> inline
typename std::enable_if<std::is_arithmetic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME(BinaryOutputArchive & ar, T const & t)
{
ar.saveBinary(std::addressof(t), sizeof(t));
}
//! Loading for POD types from binary
template<class T> inline
typename std::enable_if<std::is_arithmetic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME(BinaryInputArchive & ar, T & t)
{
ar.loadBinary(std::addressof(t), sizeof(t));
}
//! Serializing NVP types to binary
template <class Archive, class T> inline
CEREAL_ARCHIVE_RESTRICT(BinaryInputArchive, BinaryOutputArchive)
CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar, NameValuePair<T> & t )
{
ar( t.value );
}
//! Serializing SizeTags to binary
template <class Archive, class T> inline
CEREAL_ARCHIVE_RESTRICT(BinaryInputArchive, BinaryOutputArchive)
CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar, SizeTag<T> & t )
{
ar( t.size );
}
//! Saving binary data
template <class T> inline
void CEREAL_SAVE_FUNCTION_NAME(BinaryOutputArchive & ar, BinaryData<T> const & bd)
{
ar.saveBinary( bd.data, static_cast<std::size_t>( bd.size ) );
}
//! Loading binary data
template <class T> inline
void CEREAL_LOAD_FUNCTION_NAME(BinaryInputArchive & ar, BinaryData<T> & bd)
{
ar.loadBinary(bd.data, static_cast<std::size_t>(bd.size));
}
} // namespace cereal
// register archives for polymorphic support
CEREAL_REGISTER_ARCHIVE(cereal::BinaryOutputArchive)
CEREAL_REGISTER_ARCHIVE(cereal::BinaryInputArchive)
// tie input and output archives together
CEREAL_SETUP_ARCHIVE_TRAITS(cereal::BinaryInputArchive, cereal::BinaryOutputArchive)
#endif // CEREAL_ARCHIVES_BINARY_HPP_
/*! \file json.hpp
\brief JSON input and output archives */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ARCHIVES_JSON_HPP_
#define CEREAL_ARCHIVES_JSON_HPP_
#include <cereal/cereal.hpp>
#include <cereal/details/util.hpp>
namespace cereal
{
//! An exception thrown when rapidjson fails an internal assertion
/*! @ingroup Utility */
struct RapidJSONException : Exception
{ RapidJSONException( const char * what_ ) : Exception( what_ ) {} };
}
// Override rapidjson assertions to throw exceptions by default
#ifndef RAPIDJSON_ASSERT
#define RAPIDJSON_ASSERT(x) if(!(x)){ \
throw ::cereal::RapidJSONException("rapidjson internal assertion failure: " #x); }
#endif // RAPIDJSON_ASSERT
#include <cereal/external/rapidjson/prettywriter.h>
#include <cereal/external/rapidjson/genericstream.h>
#include <cereal/external/rapidjson/reader.h>
#include <cereal/external/rapidjson/document.h>
#include <cereal/external/base64.hpp>
#include <limits>
#include <sstream>
#include <stack>
#include <vector>
#include <string>
namespace cereal
{
// ######################################################################
//! An output archive designed to save data to JSON
/*! This archive uses RapidJSON to build serialie data to JSON.
JSON archives provides a human readable output but at decreased
performance (both in time and space) compared to binary archives.
JSON benefits greatly from name-value pairs, which if present, will
name the nodes in the output. If these are not present, each level
of the output will be given an automatically generated delimited name.
The precision of the output archive controls the number of decimals output
for floating point numbers and should be sufficiently large (i.e. at least 20)
if there is a desire to have binary equality between the numbers output and
those read in. In general you should expect a loss of precision when going
from floating point to text and back.
JSON archives do not output the size information for any dynamically sized structure
and instead infer it from the number of children for a node. This means that data
can be hand edited for dynamic sized structures and will still be readable. This
is accomplished through the cereal::SizeTag object, which will cause the archive
to output the data as a JSON array (e.g. marked by [] instead of {}), which indicates
that the container is variable sized and may be edited.
\ingroup Archives */
class JSONOutputArchive : public OutputArchive<JSONOutputArchive>, public traits::TextArchive
{
enum class NodeType { StartObject, InObject, StartArray, InArray };
typedef rapidjson::GenericWriteStream WriteStream;
typedef rapidjson::PrettyWriter<WriteStream> JSONWriter;
public:
/*! @name Common Functionality
Common use cases for directly interacting with an JSONOutputArchive */
//! @{
//! A class containing various advanced options for the JSON archive
class Options
{
public:
//! Default options
static Options Default(){ return Options(); }
//! Default options with no indentation
static Options NoIndent(){ return Options( std::numeric_limits<double>::max_digits10, IndentChar::space, 0 ); }
//! The character to use for indenting
enum class IndentChar : char
{
space = ' ',
tab = '\t',
newline = '\n',
carriage_return = '\r'
};
//! Specify specific options for the JSONOutputArchive
/*! @param precision The precision used for floating point numbers
@param indentChar The type of character to indent with
@param indentLength The number of indentChar to use for indentation
(0 corresponds to no indentation) */
explicit Options( int precision = std::numeric_limits<double>::max_digits10,
IndentChar indentChar = IndentChar::space,
unsigned int indentLength = 4 ) :
itsPrecision( precision ),
itsIndentChar( static_cast<char>(indentChar) ),
itsIndentLength( indentLength ) { }
private:
friend class JSONOutputArchive;
int itsPrecision;
char itsIndentChar;
unsigned int itsIndentLength;
};
//! Construct, outputting to the provided stream
/*! @param stream The stream to output to.
@param options The JSON specific options to use. See the Options struct
for the values of default parameters */
JSONOutputArchive(std::ostream & stream, Options const & options = Options::Default() ) :
OutputArchive<JSONOutputArchive>(this),
itsWriteStream(stream),
itsWriter(itsWriteStream, options.itsPrecision),
itsNextName(nullptr)
{
itsWriter.SetIndent( options.itsIndentChar, options.itsIndentLength );
itsNameCounter.push(0);
itsNodeStack.push(NodeType::StartObject);
}
//! Destructor, flushes the JSON
~JSONOutputArchive()
{
if (itsNodeStack.top() == NodeType::InObject)
itsWriter.EndObject();
}
//! Saves some binary data, encoded as a base64 string, with an optional name
/*! This will create a new node, optionally named, and insert a value that consists of
the data encoded as a base64 string */
void saveBinaryValue( const void * data, size_t size, const char * name = nullptr )
{
setNextName( name );
writeName();
auto base64string = base64::encode( reinterpret_cast<const unsigned char *>( data ), size );
saveValue( base64string );
};
//! @}
/*! @name Internal Functionality
Functionality designed for use by those requiring control over the inner mechanisms of
the JSONOutputArchive */
//! @{
//! Starts a new node in the JSON output
/*! The node can optionally be given a name by calling setNextName prior
to creating the node
Nodes only need to be started for types that are themselves objects or arrays */
void startNode()
{
writeName();
itsNodeStack.push(NodeType::StartObject);
itsNameCounter.push(0);
}
//! Designates the most recently added node as finished
void finishNode()
{
// if we ended up serializing an empty object or array, writeName
// will never have been called - so start and then immediately end
// the object/array.
//
// We'll also end any object/arrays we happen to be in
switch(itsNodeStack.top())
{
case NodeType::StartArray:
itsWriter.StartArray();
case NodeType::InArray:
itsWriter.EndArray();
break;
case NodeType::StartObject:
itsWriter.StartObject();
case NodeType::InObject:
itsWriter.EndObject();
break;
}
itsNodeStack.pop();
itsNameCounter.pop();
}
//! Sets the name for the next node created with startNode
void setNextName( const char * name )
{
itsNextName = name;
}
//! Saves a bool to the current node
void saveValue(bool b) { itsWriter.Bool_(b); }
//! Saves an int to the current node
void saveValue(int i) { itsWriter.Int(i); }
//! Saves a uint to the current node
void saveValue(unsigned u) { itsWriter.Uint(u); }
//! Saves an int64 to the current node
void saveValue(int64_t i64) { itsWriter.Int64(i64); }
//! Saves a uint64 to the current node
void saveValue(uint64_t u64) { itsWriter.Uint64(u64); }
//! Saves a double to the current node
void saveValue(double d) { itsWriter.Double(d); }
//! Saves a string to the current node
void saveValue(std::string const & s) { itsWriter.String(s.c_str(), static_cast<rapidjson::SizeType>( s.size() )); }
//! Saves a const char * to the current node
void saveValue(char const * s) { itsWriter.String(s); }
private:
// Some compilers/OS have difficulty disambiguating the above for various flavors of longs, so we provide
// special overloads to handle these cases.
//! 32 bit signed long saving to current node
template <class T, traits::EnableIf<sizeof(T) == sizeof(std::int32_t),
std::is_signed<T>::value> = traits::sfinae> inline
void saveLong(T l){ saveValue( static_cast<std::int32_t>( l ) ); }
//! non 32 bit signed long saving to current node
template <class T, traits::EnableIf<sizeof(T) != sizeof(std::int32_t),
std::is_signed<T>::value> = traits::sfinae> inline
void saveLong(T l){ saveValue( static_cast<std::int64_t>( l ) ); }
//! 32 bit unsigned long saving to current node
template <class T, traits::EnableIf<sizeof(T) == sizeof(std::int32_t),
std::is_unsigned<T>::value> = traits::sfinae> inline
void saveLong(T lu){ saveValue( static_cast<std::uint32_t>( lu ) ); }
//! non 32 bit unsigned long saving to current node
template <class T, traits::EnableIf<sizeof(T) != sizeof(std::int32_t),
std::is_unsigned<T>::value> = traits::sfinae> inline
void saveLong(T lu){ saveValue( static_cast<std::uint64_t>( lu ) ); }
public:
#ifdef _MSC_VER
//! MSVC only long overload to current node
void saveValue( unsigned long lu ){ saveLong( lu ); };
#else // _MSC_VER
//! Serialize a long if it would not be caught otherwise
template <class T, traits::EnableIf<std::is_same<T, long>::value,
!std::is_same<T, std::int32_t>::value,
!std::is_same<T, std::int64_t>::value> = traits::sfinae> inline
void saveValue( T t ){ saveLong( t ); }
//! Serialize an unsigned long if it would not be caught otherwise
template <class T, traits::EnableIf<std::is_same<T, unsigned long>::value,
!std::is_same<T, std::uint32_t>::value,
!std::is_same<T, std::uint64_t>::value> = traits::sfinae> inline
void saveValue( T t ){ saveLong( t ); }
#endif // _MSC_VER
//! Save exotic arithmetic as strings to current node
/*! Handles long long (if distinct from other types), unsigned long (if distinct), and long double */
template <class T, traits::EnableIf<std::is_arithmetic<T>::value,
!std::is_same<T, long>::value,
!std::is_same<T, unsigned long>::value,
!std::is_same<T, std::int64_t>::value,
!std::is_same<T, std::uint64_t>::value,
(sizeof(T) >= sizeof(long double) || sizeof(T) >= sizeof(long long))> = traits::sfinae> inline
void saveValue(T const & t)
{
std::stringstream ss; ss.precision( std::numeric_limits<long double>::max_digits10 );
ss << t;
saveValue( ss.str() );
}
//! Write the name of the upcoming node and prepare object/array state
/*! Since writeName is called for every value that is output, regardless of
whether it has a name or not, it is the place where we will do a deferred
check of our node state and decide whether we are in an array or an object.
The general workflow of saving to the JSON archive is:
1. (optional) Set the name for the next node to be created, usually done by an NVP
2. Start the node
3. (if there is data to save) Write the name of the node (this function)
4. (if there is data to save) Save the data (with saveValue)
5. Finish the node
*/
void writeName()
{
NodeType const & nodeType = itsNodeStack.top();
// Start up either an object or an array, depending on state
if(nodeType == NodeType::StartArray)
{
itsWriter.StartArray();
itsNodeStack.top() = NodeType::InArray;
}
else if(nodeType == NodeType::StartObject)
{
itsNodeStack.top() = NodeType::InObject;
itsWriter.StartObject();
}
// Array types do not output names
if(nodeType == NodeType::InArray) return;
if(itsNextName == nullptr)
{
std::string name = "value" + std::to_string( itsNameCounter.top()++ ) + "\0";
saveValue(name);
}
else
{
saveValue(itsNextName);
itsNextName = nullptr;
}
}
//! Designates that the current node should be output as an array, not an object
void makeArray()
{
itsNodeStack.top() = NodeType::StartArray;
}
//! @}
private:
WriteStream itsWriteStream; //!< Rapidjson write stream
JSONWriter itsWriter; //!< Rapidjson writer
char const * itsNextName; //!< The next name
std::stack<uint32_t> itsNameCounter; //!< Counter for creating unique names for unnamed nodes
std::stack<NodeType> itsNodeStack;
}; // JSONOutputArchive
// ######################################################################
//! An input archive designed to load data from JSON
/*! This archive uses RapidJSON to read in a JSON archive.
Input JSON should have been produced by the JSONOutputArchive. Data can
only be added to dynamically sized containers (marked by JSON arrays) -
the input archive will determine their size by looking at the number of child nodes.
Only JSON originating from a JSONOutputArchive is officially supported, but data
from other sources may work if properly formatted.
The JSONInputArchive does not require that nodes are loaded in the same
order they were saved by JSONOutputArchive. Using name value pairs (NVPs),
it is possible to load in an out of order fashion or otherwise skip/select
specific nodes to load.
The default behavior of the input archive is to read sequentially starting
with the first node and exploring its children. When a given NVP does
not match the read in name for a node, the archive will search for that
node at the current level and load it if it exists. After loading an out of
order node, the archive will then proceed back to loading sequentially from
its new position.
Consider this simple example where loading of some data is skipped:
@code{cpp}
// imagine the input file has someData(1-9) saved in order at the top level node
ar( someData1, someData2, someData3 ); // XML loads in the order it sees in the file
ar( cereal::make_nvp( "hello", someData6 ) ); // NVP given does not
// match expected NVP name, so we search
// for the given NVP and load that value
ar( someData7, someData8, someData9 ); // with no NVP given, loading resumes at its
// current location, proceeding sequentially
@endcode
\ingroup Archives */
class JSONInputArchive : public InputArchive<JSONInputArchive>, public traits::TextArchive
{
private:
typedef rapidjson::GenericReadStream ReadStream;
typedef rapidjson::GenericValue<rapidjson::UTF8<>> JSONValue;
typedef JSONValue::ConstMemberIterator MemberIterator;
typedef JSONValue::ConstValueIterator ValueIterator;
typedef rapidjson::Document::GenericValue GenericValue;
public:
/*! @name Common Functionality
Common use cases for directly interacting with an JSONInputArchive */
//! @{
//! Construct, reading from the provided stream
/*! @param stream The stream to read from */
JSONInputArchive(std::istream & stream) :
InputArchive<JSONInputArchive>(this),
itsNextName( nullptr ),
itsReadStream(stream)
{
itsDocument.ParseStream<0>(itsReadStream);
itsIteratorStack.emplace_back(itsDocument.MemberBegin(), itsDocument.MemberEnd());
}
//! Loads some binary data, encoded as a base64 string
/*! This will automatically start and finish a node to load the data, and can be called directly by
users.
Note that this follows the same ordering rules specified in the class description in regards
to loading in/out of order */
void loadBinaryValue( void * data, size_t size, const char * name = nullptr )
{
itsNextName = name;
std::string encoded;
loadValue( encoded );
auto decoded = base64::decode( encoded );
if( size != decoded.size() )
throw Exception("Decoded binary data size does not match specified size");
std::memcpy( data, decoded.data(), decoded.size() );
itsNextName = nullptr;
};
private:
//! @}
/*! @name Internal Functionality
Functionality designed for use by those requiring control over the inner mechanisms of
the JSONInputArchive */
//! @{
//! An internal iterator that handles both array and object types
/*! This class is a variant and holds both types of iterators that
rapidJSON supports - one for arrays and one for objects. */
class Iterator
{
public:
Iterator() : itsIndex( 0 ), itsType(Null_) {}
Iterator(MemberIterator begin, MemberIterator end) :
itsMemberItBegin(begin), itsMemberItEnd(end), itsIndex(0), itsType(Member)
{ }
Iterator(ValueIterator begin, ValueIterator end) :
itsValueItBegin(begin), itsValueItEnd(end), itsIndex(0), itsType(Value)
{ }
//! Advance to the next node
Iterator & operator++()
{
++itsIndex;
return *this;
}
//! Get the value of the current node
GenericValue const & value()
{
switch(itsType)
{
case Value : return itsValueItBegin[itsIndex];
case Member: return itsMemberItBegin[itsIndex].value;
default: throw cereal::Exception("Invalid Iterator Type!");
}
}
//! Get the name of the current node, or nullptr if it has no name
const char * name() const
{
if( itsType == Member && (itsMemberItBegin + itsIndex) != itsMemberItEnd )
return itsMemberItBegin[itsIndex].name.GetString();
else
return nullptr;
}
//! Adjust our position such that we are at the node with the given name
/*! @throws Exception if no such named node exists */
inline void search( const char * searchName )
{
const auto len = std::strlen( searchName );
size_t index = 0;
for( auto it = itsMemberItBegin; it != itsMemberItEnd; ++it, ++index )
if( std::strncmp( searchName, it->name.GetString(), len ) == 0 )
{
itsIndex = index;
return;
}
throw Exception("JSON Parsing failed - provided NVP not found");
}
private:
MemberIterator itsMemberItBegin, itsMemberItEnd; //!< The member iterator (object)
ValueIterator itsValueItBegin, itsValueItEnd; //!< The value iterator (array)
size_t itsIndex; //!< The current index of this iterator
enum Type {Value, Member, Null_} itsType; //!< Whether this holds values (array) or members (objects) or nothing
};
//! Searches for the expectedName node if it doesn't match the actualName
/*! This needs to be called before every load or node start occurs. This function will
check to see if an NVP has been provided (with setNextName) and if so, see if that name matches the actual
next name given. If the names do not match, it will search in the current level of the JSON for that name.
If the name is not found, an exception will be thrown.
Resets the NVP name after called.
@throws Exception if an expectedName is given and not found */
inline void search()
{
// The name an NVP provided with setNextName()
if( itsNextName )
{
// The actual name of the current node
auto const actualName = itsIteratorStack.back().name();
// Do a search if we don't see a name coming up, or if the names don't match
if( !actualName || std::strcmp( itsNextName, actualName ) != 0 )
itsIteratorStack.back().search( itsNextName );
}
itsNextName = nullptr;
}
public:
//! Starts a new node, going into its proper iterator
/*! This places an iterator for the next node to be parsed onto the iterator stack. If the next
node is an array, this will be a value iterator, otherwise it will be a member iterator.
By default our strategy is to start with the document root node and then recursively iterate through
all children in the order they show up in the document.
We don't need to know NVPs to do this; we'll just blindly load in the order things appear in.
If we were given an NVP, we will search for it if it does not match our the name of the next node
that would normally be loaded. This functionality is provided by search(). */
void startNode()
{
search();
if(itsIteratorStack.back().value().IsArray())
itsIteratorStack.emplace_back(itsIteratorStack.back().value().Begin(), itsIteratorStack.back().value().End());
else
itsIteratorStack.emplace_back(itsIteratorStack.back().value().MemberBegin(), itsIteratorStack.back().value().MemberEnd());
}
//! Finishes the most recently started node
void finishNode()
{
itsIteratorStack.pop_back();
++itsIteratorStack.back();
}
//! Retrieves the current node name
/*! @return nullptr if no name exists */
const char * getNodeName() const
{
return itsIteratorStack.back().name();
}
//! Sets the name for the next node created with startNode
void setNextName( const char * name )
{
itsNextName = name;
}
//! Loads a value from the current node - small signed overload
template <class T, traits::EnableIf<std::is_signed<T>::value,
sizeof(T) < sizeof(int64_t)> = traits::sfinae> inline
void loadValue(T & val)
{
search();
val = static_cast<T>( itsIteratorStack.back().value().GetInt() );
++itsIteratorStack.back();
}
//! Loads a value from the current node - small unsigned overload
template <class T, traits::EnableIf<std::is_unsigned<T>::value,
sizeof(T) < sizeof(uint64_t),
!std::is_same<bool, T>::value> = traits::sfinae> inline
void loadValue(T & val)
{
search();
val = static_cast<T>( itsIteratorStack.back().value().GetUint() );
++itsIteratorStack.back();
}
//! Loads a value from the current node - bool overload
void loadValue(bool & val) { search(); val = itsIteratorStack.back().value().GetBool_(); ++itsIteratorStack.back(); }
//! Loads a value from the current node - int64 overload
void loadValue(int64_t & val) { search(); val = itsIteratorStack.back().value().GetInt64(); ++itsIteratorStack.back(); }
//! Loads a value from the current node - uint64 overload
void loadValue(uint64_t & val) { search(); val = itsIteratorStack.back().value().GetUint64(); ++itsIteratorStack.back(); }
//! Loads a value from the current node - float overload
void loadValue(float & val) { search(); val = static_cast<float>(itsIteratorStack.back().value().GetDouble()); ++itsIteratorStack.back(); }
//! Loads a value from the current node - double overload
void loadValue(double & val) { search(); val = itsIteratorStack.back().value().GetDouble(); ++itsIteratorStack.back(); }
//! Loads a value from the current node - string overload
void loadValue(std::string & val) { search(); val = itsIteratorStack.back().value().GetString(); ++itsIteratorStack.back(); }
// Special cases to handle various flavors of long, which tend to conflict with
// the int32_t or int64_t on various compiler/OS combinations. MSVC doesn't need any of this.
#ifndef _MSC_VER
private:
//! 32 bit signed long loading from current node
template <class T> inline
typename std::enable_if<sizeof(T) == sizeof(std::int32_t) && std::is_signed<T>::value, void>::type
loadLong(T & l){ loadValue( reinterpret_cast<std::int32_t&>( l ) ); }
//! non 32 bit signed long loading from current node
template <class T> inline
typename std::enable_if<sizeof(T) == sizeof(std::int64_t) && std::is_signed<T>::value, void>::type
loadLong(T & l){ loadValue( reinterpret_cast<std::int64_t&>( l ) ); }
//! 32 bit unsigned long loading from current node
template <class T> inline
typename std::enable_if<sizeof(T) == sizeof(std::uint32_t) && !std::is_signed<T>::value, void>::type
loadLong(T & lu){ loadValue( reinterpret_cast<std::uint32_t&>( lu ) ); }
//! non 32 bit unsigned long loading from current node
template <class T> inline
typename std::enable_if<sizeof(T) == sizeof(std::uint64_t) && !std::is_signed<T>::value, void>::type
loadLong(T & lu){ loadValue( reinterpret_cast<std::uint64_t&>( lu ) ); }
public:
//! Serialize a long if it would not be caught otherwise
template <class T> inline
typename std::enable_if<std::is_same<T, long>::value &&
!std::is_same<T, std::int32_t>::value &&
!std::is_same<T, std::int64_t>::value, void>::type
loadValue( T & t ){ loadLong(t); }
//! Serialize an unsigned long if it would not be caught otherwise
template <class T> inline
typename std::enable_if<std::is_same<T, unsigned long>::value &&
!std::is_same<T, std::uint32_t>::value &&
!std::is_same<T, std::uint64_t>::value, void>::type
loadValue( T & t ){ loadLong(t); }
#endif // _MSC_VER
private:
//! Convert a string to a long long
void stringToNumber( std::string const & str, long long & val ) { val = std::stoll( str ); }
//! Convert a string to an unsigned long long
void stringToNumber( std::string const & str, unsigned long long & val ) { val = std::stoull( str ); }
//! Convert a string to a long double
void stringToNumber( std::string const & str, long double & val ) { val = std::stold( str ); }
public:
//! Loads a value from the current node - long double and long long overloads
template <class T, traits::EnableIf<std::is_arithmetic<T>::value,
!std::is_same<T, long>::value,
!std::is_same<T, unsigned long>::value,
!std::is_same<T, std::int64_t>::value,
!std::is_same<T, std::uint64_t>::value,
(sizeof(T) >= sizeof(long double) || sizeof(T) >= sizeof(long long))> = traits::sfinae>
inline void loadValue(T & val)
{
std::string encoded;
loadValue( encoded );
stringToNumber( encoded, val );
}
//! Loads the size for a SizeTag
void loadSize(size_type & size)
{
size = (itsIteratorStack.rbegin() + 1)->value().Size();
}
//! @}
private:
const char * itsNextName; //!< Next name set by NVP
ReadStream itsReadStream; //!< Rapidjson write stream
std::vector<Iterator> itsIteratorStack; //!< 'Stack' of rapidJSON iterators
rapidjson::Document itsDocument; //!< Rapidjson document
};
// ######################################################################
// JSONArchive prologue and epilogue functions
// ######################################################################
// ######################################################################
//! Prologue for NVPs for JSON archives
/*! NVPs do not start or finish nodes - they just set up the names */
template <class T> inline
void prologue( JSONOutputArchive &, NameValuePair<T> const & )
{ }
//! Prologue for NVPs for JSON archives
template <class T> inline
void prologue( JSONInputArchive &, NameValuePair<T> const & )
{ }
// ######################################################################
//! Epilogue for NVPs for JSON archives
/*! NVPs do not start or finish nodes - they just set up the names */
template <class T> inline
void epilogue( JSONOutputArchive &, NameValuePair<T> const & )
{ }
//! Epilogue for NVPs for JSON archives
/*! NVPs do not start or finish nodes - they just set up the names */
template <class T> inline
void epilogue( JSONInputArchive &, NameValuePair<T> const & )
{ }
// ######################################################################
//! Prologue for SizeTags for JSON archives
/*! SizeTags are strictly ignored for JSON, they just indicate
that the current node should be made into an array */
template <class T> inline
void prologue( JSONOutputArchive & ar, SizeTag<T> const & )
{
ar.makeArray();
}
//! Prologue for SizeTags for JSON archives
template <class T> inline
void prologue( JSONInputArchive &, SizeTag<T> const & )
{ }
// ######################################################################
//! Epilogue for SizeTags for JSON archives
/*! SizeTags are strictly ignored for JSON */
template <class T> inline
void epilogue( JSONOutputArchive &, SizeTag<T> const & )
{ }
//! Epilogue for SizeTags for JSON archives
template <class T> inline
void epilogue( JSONInputArchive &, SizeTag<T> const & )
{ }
// ######################################################################
//! Prologue for all other types for JSON archives (except minimal types)
/*! Starts a new node, named either automatically or by some NVP,
that may be given data by the type about to be archived
Minimal types do not start or finish nodes */
template <class T, traits::DisableIf<std::is_arithmetic<T>::value ||
traits::has_minimal_base_class_serialization<T, traits::has_minimal_output_serialization, JSONOutputArchive>::value ||
traits::has_minimal_output_serialization<T, JSONOutputArchive>::value> = traits::sfinae>
inline void prologue( JSONOutputArchive & ar, T const & )
{
ar.startNode();
}
//! Prologue for all other types for JSON archives
template <class T, traits::DisableIf<std::is_arithmetic<T>::value ||
traits::has_minimal_base_class_serialization<T, traits::has_minimal_input_serialization, JSONInputArchive>::value ||
traits::has_minimal_input_serialization<T, JSONInputArchive>::value> = traits::sfinae>
inline void prologue( JSONInputArchive & ar, T const & )
{
ar.startNode();
}
// ######################################################################
//! Epilogue for all other types other for JSON archives (except minimal types
/*! Finishes the node created in the prologue
Minimal types do not start or finish nodes */
template <class T, traits::DisableIf<std::is_arithmetic<T>::value ||
traits::has_minimal_base_class_serialization<T, traits::has_minimal_output_serialization, JSONOutputArchive>::value ||
traits::has_minimal_output_serialization<T, JSONOutputArchive>::value> = traits::sfinae>
inline void epilogue( JSONOutputArchive & ar, T const & )
{
ar.finishNode();
}
//! Epilogue for all other types other for JSON archives
template <class T, traits::DisableIf<std::is_arithmetic<T>::value ||
traits::has_minimal_base_class_serialization<T, traits::has_minimal_input_serialization, JSONInputArchive>::value ||
traits::has_minimal_input_serialization<T, JSONInputArchive>::value> = traits::sfinae>
inline void epilogue( JSONInputArchive & ar, T const & )
{
ar.finishNode();
}
// ######################################################################
//! Prologue for arithmetic types for JSON archives
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void prologue( JSONOutputArchive & ar, T const & )
{
ar.writeName();
}
//! Prologue for arithmetic types for JSON archives
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void prologue( JSONInputArchive &, T const & )
{ }
// ######################################################################
//! Epilogue for arithmetic types for JSON archives
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void epilogue( JSONOutputArchive &, T const & )
{ }
//! Epilogue for arithmetic types for JSON archives
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void epilogue( JSONInputArchive &, T const & )
{ }
// ######################################################################
//! Prologue for strings for JSON archives
template<class CharT, class Traits, class Alloc> inline
void prologue(JSONOutputArchive & ar, std::basic_string<CharT, Traits, Alloc> const &)
{
ar.writeName();
}
//! Prologue for strings for JSON archives
template<class CharT, class Traits, class Alloc> inline
void prologue(JSONInputArchive &, std::basic_string<CharT, Traits, Alloc> const &)
{ }
// ######################################################################
//! Epilogue for strings for JSON archives
template<class CharT, class Traits, class Alloc> inline
void epilogue(JSONOutputArchive &, std::basic_string<CharT, Traits, Alloc> const &)
{ }
//! Epilogue for strings for JSON archives
template<class CharT, class Traits, class Alloc> inline
void epilogue(JSONInputArchive &, std::basic_string<CharT, Traits, Alloc> const &)
{ }
// ######################################################################
// Common JSONArchive serialization functions
// ######################################################################
//! Serializing NVP types to JSON
template <class T> inline
void CEREAL_SAVE_FUNCTION_NAME( JSONOutputArchive & ar, NameValuePair<T> const & t )
{
ar.setNextName( t.name );
ar( t.value );
}
template <class T> inline
void CEREAL_LOAD_FUNCTION_NAME( JSONInputArchive & ar, NameValuePair<T> & t )
{
ar.setNextName( t.name );
ar( t.value );
}
//! Saving for arithmetic to JSON
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void CEREAL_SAVE_FUNCTION_NAME(JSONOutputArchive & ar, T const & t)
{
ar.saveValue( t );
}
//! Loading arithmetic from JSON
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void CEREAL_LOAD_FUNCTION_NAME(JSONInputArchive & ar, T & t)
{
ar.loadValue( t );
}
//! saving string to JSON
template<class CharT, class Traits, class Alloc> inline
void CEREAL_SAVE_FUNCTION_NAME(JSONOutputArchive & ar, std::basic_string<CharT, Traits, Alloc> const & str)
{
ar.saveValue( str );
}
//! loading string from JSON
template<class CharT, class Traits, class Alloc> inline
void CEREAL_LOAD_FUNCTION_NAME(JSONInputArchive & ar, std::basic_string<CharT, Traits, Alloc> & str)
{
ar.loadValue( str );
}
// ######################################################################
//! Saving SizeTags to JSON
template <class T> inline
void CEREAL_SAVE_FUNCTION_NAME( JSONOutputArchive &, SizeTag<T> const & )
{
// nothing to do here, we don't explicitly save the size
}
//! Loading SizeTags from JSON
template <class T> inline
void CEREAL_LOAD_FUNCTION_NAME( JSONInputArchive & ar, SizeTag<T> & st )
{
ar.loadSize( st.size );
}
} // namespace cereal
// register archives for polymorphic support
CEREAL_REGISTER_ARCHIVE(cereal::JSONInputArchive)
CEREAL_REGISTER_ARCHIVE(cereal::JSONOutputArchive)
// tie input and output archives together
CEREAL_SETUP_ARCHIVE_TRAITS(cereal::JSONInputArchive, cereal::JSONOutputArchive)
#endif // CEREAL_ARCHIVES_JSON_HPP_
/*! \file binary.hpp
\brief Binary input and output archives */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ARCHIVES_PORTABLE_BINARY_HPP_
#define CEREAL_ARCHIVES_PORTABLE_BINARY_HPP_
#include <cereal/cereal.hpp>
#include <sstream>
#include <limits>
namespace cereal
{
namespace portable_binary_detail
{
//! Returns true if the current machine is little endian
/*! @ingroup Internal */
inline bool is_little_endian()
{
static std::int32_t test = 1;
return *reinterpret_cast<std::int8_t*>( &test ) == 1;
}
//! Swaps the order of bytes for some chunk of memory
/*! @param data The data as a uint8_t pointer
@tparam DataSize The true size of the data
@ingroup Internal */
template <std::size_t DataSize>
inline void swap_bytes( std::uint8_t * data )
{
for( std::size_t i = 0, end = DataSize / 2; i < end; ++i )
std::swap( data[i], data[DataSize - i - 1] );
}
} // end namespace portable_binary_detail
// ######################################################################
//! An output archive designed to save data in a compact binary representation portable over different architectures
/*! This archive outputs data to a stream in an extremely compact binary
representation with as little extra metadata as possible.
This archive will record the endianness of the data and assuming that
the user takes care of ensuring serialized types are the same size
across machines, is portable over different architectures.
When using a binary archive and a file stream, you must use the
std::ios::binary format flag to avoid having your data altered
inadvertently.
\warning This archive has not been thoroughly tested across different architectures.
Please report any issues, optimizations, or feature requests at
<a href="www.github.com/USCiLab/cereal">the project github</a>.
\ingroup Archives */
class PortableBinaryOutputArchive : public OutputArchive<PortableBinaryOutputArchive, AllowEmptyClassElision>
{
public:
//! Construct, outputting to the provided stream
/*! @param stream The stream to output to. Can be a stringstream, a file stream, or
even cout! */
PortableBinaryOutputArchive(std::ostream & stream) :
OutputArchive<PortableBinaryOutputArchive, AllowEmptyClassElision>(this),
itsStream(stream)
{
this->operator()( portable_binary_detail::is_little_endian() );
}
//! Writes size bytes of data to the output stream
void saveBinary( const void * data, std::size_t size )
{
auto const writtenSize = static_cast<std::size_t>( itsStream.rdbuf()->sputn( reinterpret_cast<const char*>( data ), size ) );
if(writtenSize != size)
throw Exception("Failed to write " + std::to_string(size) + " bytes to output stream! Wrote " + std::to_string(writtenSize));
}
private:
std::ostream & itsStream;
};
// ######################################################################
//! An input archive designed to load data saved using PortableBinaryOutputArchive
/*! This archive outputs data to a stream in an extremely compact binary
representation with as little extra metadata as possible.
This archive will load the endianness of the serialized data and
if necessary transform it to match that of the local machine. This comes
at a significant performance cost compared to non portable archives if
the transformation is necessary, and also causes a small performance hit
even if it is not necessary.
It is recommended to use portable archives only if you know that you will
be sending binary data to machines with different endianness.
The archive will do nothing to ensure types are the same size - that is
the responsibility of the user.
When using a binary archive and a file stream, you must use the
std::ios::binary format flag to avoid having your data altered
inadvertently.
\warning This archive has not been thoroughly tested across different architectures.
Please report any issues, optimizations, or feature requests at
<a href="www.github.com/USCiLab/cereal">the project github</a>.
\ingroup Archives */
class PortableBinaryInputArchive : public InputArchive<PortableBinaryInputArchive, AllowEmptyClassElision>
{
public:
//! Construct, loading from the provided stream
/*! @param stream The stream to read from. */
PortableBinaryInputArchive(std::istream & stream) :
InputArchive<PortableBinaryInputArchive, AllowEmptyClassElision>(this),
itsStream(stream),
itsConvertEndianness( false )
{
bool streamLittleEndian;
this->operator()( streamLittleEndian );
itsConvertEndianness = portable_binary_detail::is_little_endian() ^ streamLittleEndian;
}
//! Reads size bytes of data from the input stream
/*! @param data The data to save
@param size The number of bytes in the data
@tparam DataSize T The size of the actual type of the data elements being loaded */
template <std::size_t DataSize>
void loadBinary( void * const data, std::size_t size )
{
// load data
auto const readSize = static_cast<std::size_t>( itsStream.rdbuf()->sgetn( reinterpret_cast<char*>( data ), size ) );
if(readSize != size)
throw Exception("Failed to read " + std::to_string(size) + " bytes from input stream! Read " + std::to_string(readSize));
// flip bits if needed
if( itsConvertEndianness )
{
std::uint8_t * ptr = reinterpret_cast<std::uint8_t*>( data );
for( std::size_t i = 0; i < size; i += DataSize )
portable_binary_detail::swap_bytes<DataSize>( ptr );
}
}
private:
std::istream & itsStream;
bool itsConvertEndianness; //!< If set to true, we will need to swap bytes upon loading
};
// ######################################################################
// Common BinaryArchive serialization functions
//! Saving for POD types to portable binary
template<class T> inline
typename std::enable_if<std::is_arithmetic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME(PortableBinaryOutputArchive & ar, T const & t)
{
static_assert( !std::is_floating_point<T>::value ||
(std::is_floating_point<T>::value && std::numeric_limits<T>::is_iec559),
"Portable binary only supports IEEE 754 standardized floating point" );
ar.saveBinary(std::addressof(t), sizeof(t));
}
//! Loading for POD types from portable binary
template<class T> inline
typename std::enable_if<std::is_arithmetic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME(PortableBinaryInputArchive & ar, T & t)
{
static_assert( !std::is_floating_point<T>::value ||
(std::is_floating_point<T>::value && std::numeric_limits<T>::is_iec559),
"Portable binary only supports IEEE 754 standardized floating point" );
ar.template loadBinary<sizeof(T)>(std::addressof(t), sizeof(t));
}
//! Serializing NVP types to portable binary
template <class Archive, class T> inline
CEREAL_ARCHIVE_RESTRICT(PortableBinaryInputArchive, PortableBinaryOutputArchive)
CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar, NameValuePair<T> & t )
{
ar( t.value );
}
//! Serializing SizeTags to portable binary
template <class Archive, class T> inline
CEREAL_ARCHIVE_RESTRICT(PortableBinaryInputArchive, PortableBinaryOutputArchive)
CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar, SizeTag<T> & t )
{
ar( t.size );
}
//! Saving binary data to portable binary
template <class T> inline
void CEREAL_SAVE_FUNCTION_NAME(PortableBinaryOutputArchive & ar, BinaryData<T> const & bd)
{
typedef typename std::remove_pointer<T>::type TT;
static_assert( !std::is_floating_point<TT>::value ||
(std::is_floating_point<TT>::value && std::numeric_limits<TT>::is_iec559),
"Portable binary only supports IEEE 754 standardized floating point" );
ar.saveBinary( bd.data, static_cast<std::size_t>( bd.size ) );
}
//! Loading binary data from portable binary
template <class T> inline
void CEREAL_LOAD_FUNCTION_NAME(PortableBinaryInputArchive & ar, BinaryData<T> & bd)
{
typedef typename std::remove_pointer<T>::type TT;
static_assert( !std::is_floating_point<TT>::value ||
(std::is_floating_point<TT>::value && std::numeric_limits<TT>::is_iec559),
"Portable binary only supports IEEE 754 standardized floating point" );
ar.template loadBinary<sizeof(TT)>( bd.data, static_cast<std::size_t>( bd.size ) );
}
} // namespace cereal
// register archives for polymorphic support
CEREAL_REGISTER_ARCHIVE(cereal::PortableBinaryOutputArchive)
CEREAL_REGISTER_ARCHIVE(cereal::PortableBinaryInputArchive)
// tie input and output archives together
CEREAL_SETUP_ARCHIVE_TRAITS(cereal::PortableBinaryInputArchive, cereal::PortableBinaryOutputArchive)
#endif // CEREAL_ARCHIVES_PORTABLE_BINARY_HPP_
/*! \file xml.hpp
\brief XML input and output archives */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_ARCHIVES_XML_HPP_
#define CEREAL_ARCHIVES_XML_HPP_
#include <cereal/cereal.hpp>
#include <cereal/details/util.hpp>
#include <cereal/external/rapidxml/rapidxml.hpp>
#include <cereal/external/rapidxml/rapidxml_print.hpp>
#include <cereal/external/base64.hpp>
#include <sstream>
#include <stack>
#include <vector>
#include <limits>
#include <string>
#include <cstring>
#include <cmath>
namespace cereal
{
namespace xml_detail
{
#ifndef CEREAL_XML_STRING_VALUE
//! The default name for the root node in a cereal xml archive.
/*! You can define CEREAL_XML_STRING_VALUE to be different assuming you do so
before this file is included. */
#define CEREAL_XML_STRING_VALUE "cereal"
#endif // CEREAL_XML_STRING_VALUE
//! The name given to the root node in a cereal xml archive
static const char * CEREAL_XML_STRING = CEREAL_XML_STRING_VALUE;
//! Returns true if the character is whitespace
inline bool isWhitespace( char c )
{
return c == ' ' || c == '\t' || c == '\n' || c == '\r';
}
}
// ######################################################################
//! An output archive designed to save data to XML
/*! This archive uses RapidXML to build an in memory XML tree of the
data it serializes before outputting it to its stream upon destruction.
The envisioned way of using this archive is in an RAII fashion, letting
the automatic destruction of the object cause the flush to its stream.
XML archives provides a human readable output but at decreased
performance (both in time and space) compared to binary archives.
XML benefits greatly from name-value pairs, which if present, will
name the nodes in the output. If these are not present, each level
of the output tree will be given an automatically generated delimited name.
The precision of the output archive controls the number of decimals output
for floating point numbers and should be sufficiently large (i.e. at least 20)
if there is a desire to have binary equality between the numbers output and
those read in. In general you should expect a loss of precision when going
from floating point to text and back.
XML archives can optionally print the type of everything they serialize, which
adds an attribute to each node.
XML archives do not output the size information for any dynamically sized structure
and instead infer it from the number of children for a node. This means that data
can be hand edited for dynamic sized structures and will still be readable. This
is accomplished through the cereal::SizeTag object, which will also add an attribute
to its parent field.
\ingroup Archives */
class XMLOutputArchive : public OutputArchive<XMLOutputArchive>, public traits::TextArchive
{
public:
/*! @name Common Functionality
Common use cases for directly interacting with an XMLOutputArchive */
//! @{
//! A class containing various advanced options for the XML archive
class Options
{
public:
//! Default options
static Options Default(){ return Options(); }
//! Default options with no indentation
static Options NoIndent(){ return Options( std::numeric_limits<double>::max_digits10, false ); }
//! Specify specific options for the XMLOutputArchive
/*! @param precision The precision used for floating point numbers
@param indent Whether to indent each line of XML
@param outputType Whether to output the type of each serialized object as an attribute */
explicit Options( int precision = std::numeric_limits<double>::max_digits10,
bool indent = true,
bool outputType = false ) :
itsPrecision( precision ),
itsIndent( indent ),
itsOutputType( outputType ) { }
private:
friend class XMLOutputArchive;
int itsPrecision;
bool itsIndent;
bool itsOutputType;
};
//! Construct, outputting to the provided stream upon destruction
/*! @param stream The stream to output to. Note that XML is only guaranteed to flush
its output to the stream upon destruction.
@param options The XML specific options to use. See the Options struct
for the values of default parameters */
XMLOutputArchive( std::ostream & stream, Options const & options = Options::Default() ) :
OutputArchive<XMLOutputArchive>(this),
itsStream(stream),
itsOutputType( options.itsOutputType ),
itsIndent( options.itsIndent )
{
// rapidxml will delete all allocations when xml_document is cleared
auto node = itsXML.allocate_node( rapidxml::node_declaration );
node->append_attribute( itsXML.allocate_attribute( "version", "1.0" ) );
node->append_attribute( itsXML.allocate_attribute( "encoding", "utf-8" ) );
itsXML.append_node( node );
// allocate root node
auto root = itsXML.allocate_node( rapidxml::node_element, xml_detail::CEREAL_XML_STRING );
itsXML.append_node( root );
itsNodes.emplace( root );
// set attributes on the streams
itsStream << std::boolalpha;
itsStream.precision( options.itsPrecision );
itsOS << std::boolalpha;
itsOS.precision( options.itsPrecision );
}
//! Destructor, flushes the XML
~XMLOutputArchive()
{
const int flags = itsIndent ? 0x0 : rapidxml::print_no_indenting;
rapidxml::print( itsStream, itsXML, flags );
itsXML.clear();
}
//! Saves some binary data, encoded as a base64 string, with an optional name
/*! This can be called directly by users and it will automatically create a child node for
the current XML node, populate it with a base64 encoded string, and optionally name
it. The node will be finished after it has been populated. */
void saveBinaryValue( const void * data, size_t size, const char * name = nullptr )
{
itsNodes.top().name = name;
startNode();
auto base64string = base64::encode( reinterpret_cast<const unsigned char *>( data ), size );
saveValue( base64string );
if( itsOutputType )
itsNodes.top().node->append_attribute( itsXML.allocate_attribute( "type", "cereal binary data" ) );
finishNode();
};
//! @}
/*! @name Internal Functionality
Functionality designed for use by those requiring control over the inner mechanisms of
the XMLOutputArchive */
//! @{
//! Creates a new node that is a child of the node at the top of the stack
/*! Nodes will be given a name that has either been pre-set by a name value pair,
or generated based upon a counter unique to the parent node. If you want to
give a node a specific name, use setNextName prior to calling startNode.
The node will then be pushed onto the node stack. */
void startNode()
{
// generate a name for this new node
const auto nameString = itsNodes.top().getValueName();
// allocate strings for all of the data in the XML object
auto namePtr = itsXML.allocate_string( nameString.data(), nameString.length() + 1 );
// insert into the XML
auto node = itsXML.allocate_node( rapidxml::node_element, namePtr, nullptr, nameString.size() );
itsNodes.top().node->append_node( node );
itsNodes.emplace( node );
}
//! Designates the most recently added node as finished
void finishNode()
{
itsNodes.pop();
}
//! Sets the name for the next node created with startNode
void setNextName( const char * name )
{
itsNodes.top().name = name;
}
//! Saves some data, encoded as a string, into the current top level node
/*! The data will be be named with the most recent name if one exists,
otherwise it will be given some default delimited value that depends upon
the parent node */
template <class T> inline
void saveValue( T const & value )
{
itsOS.clear(); itsOS.seekp( 0, std::ios::beg );
itsOS << value << std::ends;
const auto strValue = itsOS.str();
// If the first or last character is a whitespace, add xml:space attribute
// the string always contains a '\0' added by std::ends, so the last character is at len-2 and an 'empty'
// string has a length of 1 or lower
const auto len = strValue.length();
if ( len > 1 && ( xml_detail::isWhitespace( strValue[0] ) || xml_detail::isWhitespace( strValue[len - 2] ) ) )
{
itsNodes.top().node->append_attribute( itsXML.allocate_attribute( "xml:space", "preserve" ) );
}
// allocate strings for all of the data in the XML object
auto dataPtr = itsXML.allocate_string( itsOS.str().c_str(), itsOS.str().length() + 1 );
// insert into the XML
itsNodes.top().node->append_node( itsXML.allocate_node( rapidxml::node_data, nullptr, dataPtr ) );
}
//! Overload for uint8_t prevents them from being serialized as characters
void saveValue( uint8_t const & value )
{
saveValue( static_cast<uint32_t>( value ) );
}
//! Overload for int8_t prevents them from being serialized as characters
void saveValue( int8_t const & value )
{
saveValue( static_cast<int32_t>( value ) );
}
//! Causes the type to be appended as an attribute to the most recently made node if output type is set to true
template <class T> inline
void insertType()
{
if( !itsOutputType )
return;
// generate a name for this new node
const auto nameString = util::demangledName<T>();
// allocate strings for all of the data in the XML object
auto namePtr = itsXML.allocate_string( nameString.data(), nameString.length() + 1 );
itsNodes.top().node->append_attribute( itsXML.allocate_attribute( "type", namePtr ) );
}
//! Appends an attribute to the current top level node
void appendAttribute( const char * name, const char * value )
{
auto namePtr = itsXML.allocate_string( name );
auto valuePtr = itsXML.allocate_string( value );
itsNodes.top().node->append_attribute( itsXML.allocate_attribute( namePtr, valuePtr ) );
}
protected:
//! A struct that contains metadata about a node
struct NodeInfo
{
NodeInfo( rapidxml::xml_node<> * n = nullptr,
const char * nm = nullptr ) :
node( n ),
counter( 0 ),
name( nm )
{ }
rapidxml::xml_node<> * node; //!< A pointer to this node
size_t counter; //!< The counter for naming child nodes
const char * name; //!< The name for the next child node
//! Gets the name for the next child node created from this node
/*! The name will be automatically generated using the counter if
a name has not been previously set. If a name has been previously
set, that name will be returned only once */
std::string getValueName()
{
if( name )
{
auto n = name;
name = nullptr;
return {n};
}
else
return "value" + std::to_string( counter++ ) + "\0";
}
}; // NodeInfo
//! @}
private:
std::ostream & itsStream; //!< The output stream
rapidxml::xml_document<> itsXML; //!< The XML document
std::stack<NodeInfo> itsNodes; //!< A stack of nodes added to the document
std::ostringstream itsOS; //!< Used to format strings internally
bool itsOutputType; //!< Controls whether type information is printed
bool itsIndent; //!< Controls whether indenting is used
}; // XMLOutputArchive
// ######################################################################
//! An output archive designed to load data from XML
/*! This archive uses RapidXML to build an in memory XML tree of the
data in the stream it is given before loading any types serialized.
Input XML should have been produced by the XMLOutputArchive. Data can
only be added to dynamically sized containers - the input archive will
determine their size by looking at the number of child nodes. Data that
did not originate from an XMLOutputArchive is not officially supported,
but may be possible to use if properly formatted.
The XMLInputArchive does not require that nodes are loaded in the same
order they were saved by XMLOutputArchive. Using name value pairs (NVPs),
it is possible to load in an out of order fashion or otherwise skip/select
specific nodes to load.
The default behavior of the input archive is to read sequentially starting
with the first node and exploring its children. When a given NVP does
not match the read in name for a node, the archive will search for that
node at the current level and load it if it exists. After loading an out of
order node, the archive will then proceed back to loading sequentially from
its new position.
Consider this simple example where loading of some data is skipped:
@code{cpp}
// imagine the input file has someData(1-9) saved in order at the top level node
ar( someData1, someData2, someData3 ); // XML loads in the order it sees in the file
ar( cereal::make_nvp( "hello", someData6 ) ); // NVP given does not
// match expected NVP name, so we search
// for the given NVP and load that value
ar( someData7, someData8, someData9 ); // with no NVP given, loading resumes at its
// current location, proceeding sequentially
@endcode
\ingroup Archives */
class XMLInputArchive : public InputArchive<XMLInputArchive>, public traits::TextArchive
{
public:
/*! @name Common Functionality
Common use cases for directly interacting with an XMLInputArchive */
//! @{
//! Construct, reading in from the provided stream
/*! Reads in an entire XML document from some stream and parses it as soon
as serialization starts
@param stream The stream to read from. Can be a stringstream or a file. */
XMLInputArchive( std::istream & stream ) :
InputArchive<XMLInputArchive>( this ),
itsData( std::istreambuf_iterator<char>( stream ), std::istreambuf_iterator<char>() )
{
try
{
itsData.push_back('\0'); // rapidxml will do terrible things without the data being null terminated
itsXML.parse<rapidxml::parse_trim_whitespace | rapidxml::parse_no_data_nodes | rapidxml::parse_declaration_node>( reinterpret_cast<char *>( itsData.data() ) );
}
catch( rapidxml::parse_error const & )
{
//std::cerr << "-----Original-----" << std::endl;
//stream.seekg(0);
//std::cout << std::string( std::istreambuf_iterator<char>( stream ), std::istreambuf_iterator<char>() ) << std::endl;
//std::cerr << "-----Error-----" << std::endl;
//std::cerr << e.what() << std::endl;
//std::cerr << e.where<char>() << std::endl;
throw Exception("XML Parsing failed - likely due to invalid characters or invalid naming");
}
// Parse the root
auto root = itsXML.first_node( xml_detail::CEREAL_XML_STRING );
if( root == nullptr )
throw Exception("Could not detect cereal root node - likely due to empty or invalid input");
else
itsNodes.emplace( root );
}
//! Loads some binary data, encoded as a base64 string, optionally specified by some name
/*! This will automatically start and finish a node to load the data, and can be called directly by
users.
Note that this follows the same ordering rules specified in the class description in regards
to loading in/out of order */
void loadBinaryValue( void * data, size_t size, const char * name = nullptr )
{
setNextName( name );
startNode();
std::string encoded;
loadValue( encoded );
auto decoded = base64::decode( encoded );
if( size != decoded.size() )
throw Exception("Decoded binary data size does not match specified size");
std::memcpy( data, decoded.data(), decoded.size() );
finishNode();
};
//! @}
/*! @name Internal Functionality
Functionality designed for use by those requiring control over the inner mechanisms of
the XMLInputArchive */
//! @{
//! Prepares to start reading the next node
/*! This places the next node to be parsed onto the nodes stack.
By default our strategy is to start with the document root node and then
recursively iterate through all children in the order they show up in the document.
We don't need to know NVPs do to this; we'll just blindly load in the order things appear in.
We check to see if the specified NVP matches what the next automatically loaded node is. If they
match, we just continue as normal, going in order. If they don't match, we attempt to find a node
named after the NVP that is being loaded. If that NVP does not exist, we throw an exception. */
void startNode()
{
auto next = itsNodes.top().child; // By default we would move to the next child node
auto const expectedName = itsNodes.top().name; // this is the expected name from the NVP, if provided
// If we were given an NVP name, look for it in the current level of the document.
// We only need to do this if either we have exhausted the siblings of the current level or
// the NVP name does not match the name of the node we would normally read next
if( expectedName && ( next == nullptr || std::strcmp( next->name(), expectedName ) != 0 ) )
{
next = itsNodes.top().search( expectedName );
if( next == nullptr )
throw Exception("XML Parsing failed - provided NVP not found");
}
itsNodes.emplace( next );
}
//! Finishes reading the current node
void finishNode()
{
// remove current
itsNodes.pop();
// advance parent
itsNodes.top().advance();
// Reset name
itsNodes.top().name = nullptr;
}
//! Retrieves the current node name
//! will return @c nullptr if the node does not have a name
const char * getNodeName() const
{
return itsNodes.top().node->name();
}
//! Sets the name for the next node created with startNode
void setNextName( const char * name )
{
itsNodes.top().name = name;
}
//! Loads a bool from the current top node
template <class T, traits::EnableIf<std::is_unsigned<T>::value,
std::is_same<T, bool>::value> = traits::sfinae> inline
void loadValue( T & value )
{
std::istringstream is( itsNodes.top().node->value() );
is.setf( std::ios::boolalpha );
is >> value;
}
//! Loads a char (signed or unsigned) from the current top node
template <class T, traits::EnableIf<std::is_integral<T>::value,
!std::is_same<T, bool>::value,
sizeof(T) == sizeof(char)> = traits::sfinae> inline
void loadValue( T & value )
{
value = *reinterpret_cast<T*>( itsNodes.top().node->value() );
}
//! Load an int8_t from the current top node (ensures we parse entire number)
void loadValue( int8_t & value )
{
int32_t val; loadValue( val ); value = static_cast<int8_t>( val );
}
//! Load a uint8_t from the current top node (ensures we parse entire number)
void loadValue( uint8_t & value )
{
uint32_t val; loadValue( val ); value = static_cast<uint8_t>( val );
}
//! Loads a type best represented as an unsigned long from the current top node
template <class T, traits::EnableIf<std::is_unsigned<T>::value,
!std::is_same<T, bool>::value,
!std::is_same<T, unsigned char>::value,
sizeof(T) < sizeof(long long)> = traits::sfinae> inline
void loadValue( T & value )
{
value = static_cast<T>( std::stoul( itsNodes.top().node->value() ) );
}
//! Loads a type best represented as an unsigned long long from the current top node
template <class T, traits::EnableIf<std::is_unsigned<T>::value,
!std::is_same<T, bool>::value,
sizeof(T) >= sizeof(long long)> = traits::sfinae> inline
void loadValue( T & value )
{
value = static_cast<T>( std::stoull( itsNodes.top().node->value() ) );
}
//! Loads a type best represented as an int from the current top node
template <class T, traits::EnableIf<std::is_signed<T>::value,
!std::is_same<T, char>::value,
sizeof(T) <= sizeof(int)> = traits::sfinae> inline
void loadValue( T & value )
{
value = static_cast<T>( std::stoi( itsNodes.top().node->value() ) );
}
//! Loads a type best represented as a long from the current top node
template <class T, traits::EnableIf<std::is_signed<T>::value,
(sizeof(T) > sizeof(int)),
sizeof(T) <= sizeof(long)> = traits::sfinae> inline
void loadValue( T & value )
{
value = static_cast<T>( std::stol( itsNodes.top().node->value() ) );
}
//! Loads a type best represented as a long long from the current top node
template <class T, traits::EnableIf<std::is_signed<T>::value,
(sizeof(T) > sizeof(long)),
sizeof(T) <= sizeof(long long)> = traits::sfinae> inline
void loadValue( T & value )
{
value = static_cast<T>( std::stoll( itsNodes.top().node->value() ) );
}
//! Loads a type best represented as a float from the current top node
void loadValue( float & value )
{
try
{
value = std::stof( itsNodes.top().node->value() );
}
catch( std::out_of_range const & )
{
// special case for denormalized values
std::istringstream is( itsNodes.top().node->value() );
is >> value;
if( std::fpclassify( value ) != FP_SUBNORMAL )
throw;
}
}
//! Loads a type best represented as a double from the current top node
void loadValue( double & value )
{
try
{
value = std::stod( itsNodes.top().node->value() );
}
catch( std::out_of_range const & )
{
// special case for denormalized values
std::istringstream is( itsNodes.top().node->value() );
is >> value;
if( std::fpclassify( value ) != FP_SUBNORMAL )
throw;
}
}
//! Loads a type best represented as a long double from the current top node
void loadValue( long double & value )
{
try
{
value = std::stold( itsNodes.top().node->value() );
}
catch( std::out_of_range const & )
{
// special case for denormalized values
std::istringstream is( itsNodes.top().node->value() );
is >> value;
if( std::fpclassify( value ) != FP_SUBNORMAL )
throw;
}
}
//! Loads a string from the current node from the current top node
template<class CharT, class Traits, class Alloc> inline
void loadValue( std::basic_string<CharT, Traits, Alloc> & str )
{
std::basic_istringstream<CharT, Traits> is( itsNodes.top().node->value() );
str.assign( std::istreambuf_iterator<CharT, Traits>( is ),
std::istreambuf_iterator<CharT, Traits>() );
}
//! Loads the size of the current top node
template <class T> inline
void loadSize( T & value )
{
value = getNumChildren( itsNodes.top().node );
}
protected:
//! Gets the number of children (usually interpreted as size) for the specified node
static size_t getNumChildren( rapidxml::xml_node<> * node )
{
size_t size = 0;
node = node->first_node(); // get first child
while( node != nullptr )
{
++size;
node = node->next_sibling();
}
return size;
}
//! A struct that contains metadata about a node
/*! Keeps track of some top level node, its number of
remaining children, and the current active child node */
struct NodeInfo
{
NodeInfo( rapidxml::xml_node<> * n = nullptr ) :
node( n ),
child( n->first_node() ),
size( XMLInputArchive::getNumChildren( n ) ),
name( nullptr )
{ }
//! Advances to the next sibling node of the child
/*! If this is the last sibling child will be null after calling */
void advance()
{
if( size > 0 )
{
--size;
child = child->next_sibling();
}
}
//! Searches for a child with the given name in this node
/*! @param searchName The name to search for (must be null terminated)
@return The node if found, nullptr otherwise */
rapidxml::xml_node<> * search( const char * searchName )
{
if( searchName )
{
size_t new_size = XMLInputArchive::getNumChildren( node );
const size_t name_size = rapidxml::internal::measure( searchName );
for( auto new_child = node->first_node(); new_child != nullptr; new_child = new_child->next_sibling() )
{
if( rapidxml::internal::compare( new_child->name(), new_child->name_size(), searchName, name_size, true ) )
{
size = new_size;
child = new_child;
return new_child;
}
--new_size;
}
}
return nullptr;
}
rapidxml::xml_node<> * node; //!< A pointer to this node
rapidxml::xml_node<> * child; //!< A pointer to its current child
size_t size; //!< The remaining number of children for this node
const char * name; //!< The NVP name for next next child node
}; // NodeInfo
//! @}
private:
std::vector<char> itsData; //!< The raw data loaded
rapidxml::xml_document<> itsXML; //!< The XML document
std::stack<NodeInfo> itsNodes; //!< A stack of nodes read from the document
};
// ######################################################################
// XMLArchive prologue and epilogue functions
// ######################################################################
// ######################################################################
//! Prologue for NVPs for XML output archives
/*! NVPs do not start or finish nodes - they just set up the names */
template <class T> inline
void prologue( XMLOutputArchive &, NameValuePair<T> const & )
{ }
//! Prologue for NVPs for XML input archives
template <class T> inline
void prologue( XMLInputArchive &, NameValuePair<T> const & )
{ }
// ######################################################################
//! Epilogue for NVPs for XML output archives
/*! NVPs do not start or finish nodes - they just set up the names */
template <class T> inline
void epilogue( XMLOutputArchive &, NameValuePair<T> const & )
{ }
//! Epilogue for NVPs for XML input archives
template <class T> inline
void epilogue( XMLInputArchive &, NameValuePair<T> const & )
{ }
// ######################################################################
//! Prologue for SizeTags for XML output archives
/*! SizeTags do not start or finish nodes */
template <class T> inline
void prologue( XMLOutputArchive & ar, SizeTag<T> const & )
{
ar.appendAttribute( "size", "dynamic" );
}
template <class T> inline
void prologue( XMLInputArchive &, SizeTag<T> const & )
{ }
//! Epilogue for SizeTags for XML output archives
/*! SizeTags do not start or finish nodes */
template <class T> inline
void epilogue( XMLOutputArchive &, SizeTag<T> const & )
{ }
template <class T> inline
void epilogue( XMLInputArchive &, SizeTag<T> const & )
{ }
// ######################################################################
//! Prologue for all other types for XML output archives (except minimal types)
/*! Starts a new node, named either automatically or by some NVP,
that may be given data by the type about to be archived
Minimal types do not start or end nodes */
template <class T, traits::DisableIf<traits::has_minimal_base_class_serialization<T, traits::has_minimal_output_serialization, XMLOutputArchive>::value ||
traits::has_minimal_output_serialization<T, XMLOutputArchive>::value> = traits::sfinae> inline
void prologue( XMLOutputArchive & ar, T const & )
{
ar.startNode();
ar.insertType<T>();
}
//! Prologue for all other types for XML input archives (except minimal types)
template <class T, traits::DisableIf<traits::has_minimal_base_class_serialization<T, traits::has_minimal_input_serialization, XMLInputArchive>::value ||
traits::has_minimal_input_serialization<T, XMLInputArchive>::value> = traits::sfinae> inline
void prologue( XMLInputArchive & ar, T const & )
{
ar.startNode();
}
// ######################################################################
//! Epilogue for all other types other for XML output archives (except minimal types)
/*! Finishes the node created in the prologue
Minimal types do not start or end nodes */
template <class T, traits::DisableIf<traits::has_minimal_base_class_serialization<T, traits::has_minimal_output_serialization, XMLOutputArchive>::value ||
traits::has_minimal_output_serialization<T, XMLOutputArchive>::value> = traits::sfinae> inline
void epilogue( XMLOutputArchive & ar, T const & )
{
ar.finishNode();
}
//! Epilogue for all other types other for XML output archives (except minimal types)
template <class T, traits::DisableIf<traits::has_minimal_base_class_serialization<T, traits::has_minimal_input_serialization, XMLInputArchive>::value ||
traits::has_minimal_input_serialization<T, XMLInputArchive>::value> = traits::sfinae> inline
void epilogue( XMLInputArchive & ar, T const & )
{
ar.finishNode();
}
// ######################################################################
// Common XMLArchive serialization functions
// ######################################################################
//! Saving NVP types to XML
template <class T> inline
void CEREAL_SAVE_FUNCTION_NAME( XMLOutputArchive & ar, NameValuePair<T> const & t )
{
ar.setNextName( t.name );
ar( t.value );
}
//! Loading NVP types from XML
template <class T> inline
void CEREAL_LOAD_FUNCTION_NAME( XMLInputArchive & ar, NameValuePair<T> & t )
{
ar.setNextName( t.name );
ar( t.value );
}
// ######################################################################
//! Saving SizeTags to XML
template <class T> inline
void CEREAL_SAVE_FUNCTION_NAME( XMLOutputArchive &, SizeTag<T> const & )
{ }
//! Loading SizeTags from XML
template <class T> inline
void CEREAL_LOAD_FUNCTION_NAME( XMLInputArchive & ar, SizeTag<T> & st )
{
ar.loadSize( st.size );
}
// ######################################################################
//! Saving for POD types to xml
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void CEREAL_SAVE_FUNCTION_NAME(XMLOutputArchive & ar, T const & t)
{
ar.saveValue( t );
}
//! Loading for POD types from xml
template <class T, traits::EnableIf<std::is_arithmetic<T>::value> = traits::sfinae> inline
void CEREAL_LOAD_FUNCTION_NAME(XMLInputArchive & ar, T & t)
{
ar.loadValue( t );
}
// ######################################################################
//! saving string to xml
template<class CharT, class Traits, class Alloc> inline
void CEREAL_SAVE_FUNCTION_NAME(XMLOutputArchive & ar, std::basic_string<CharT, Traits, Alloc> const & str)
{
ar.saveValue( str );
}
//! loading string from xml
template<class CharT, class Traits, class Alloc> inline
void CEREAL_LOAD_FUNCTION_NAME(XMLInputArchive & ar, std::basic_string<CharT, Traits, Alloc> & str)
{
ar.loadValue( str );
}
} // namespace cereal
// register archives for polymorphic support
CEREAL_REGISTER_ARCHIVE(cereal::XMLOutputArchive)
CEREAL_REGISTER_ARCHIVE(cereal::XMLInputArchive)
// tie input and output archives together
CEREAL_SETUP_ARCHIVE_TRAITS(cereal::XMLInputArchive, cereal::XMLOutputArchive)
#endif // CEREAL_ARCHIVES_XML_HPP_
/*! \file cereal.hpp
\brief Main cereal functionality */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_CEREAL_HPP_
#define CEREAL_CEREAL_HPP_
#include <type_traits>
#include <string>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include <cstddef>
#include <cstdint>
#include <functional>
#include <cereal/macros.hpp>
#include <cereal/details/traits.hpp>
#include <cereal/details/helpers.hpp>
#include <cereal/types/base_class.hpp>
namespace cereal
{
// ######################################################################
//! Creates a name value pair
/*! @relates NameValuePair
@ingroup Utility */
template <class T> inline
NameValuePair<T> make_nvp( std::string const & name, T && value )
{
return {name.c_str(), std::forward<T>(value)};
}
//! Creates a name value pair
/*! @relates NameValuePair
@ingroup Utility */
template <class T> inline
NameValuePair<T> make_nvp( const char * name, T && value )
{
return {name, std::forward<T>(value)};
}
//! Creates a name value pair for the variable T with the same name as the variable
/*! @relates NameValuePair
@ingroup Utility */
#define CEREAL_NVP(T) ::cereal::make_nvp(#T, T)
// ######################################################################
//! Convenience function to create binary data for both const and non const pointers
/*! @param data Pointer to beginning of the data
@param size The size in bytes of the data
@relates BinaryData
@ingroup Utility */
template <class T> inline
BinaryData<T> binary_data( T && data, size_t size )
{
return {std::forward<T>(data), size};
}
// ######################################################################
//! Creates a size tag from some variable.
/*! Will normally be used to serialize size (e.g. size()) information for
variable size containers. If you have a variable sized container,
the very first thing it serializes should be its size, wrapped in
a SizeTag.
@relates SizeTag
@ingroup Utility */
template <class T>
SizeTag<T> make_size_tag( T && sz )
{
return {std::forward<T>(sz)};
}
// ######################################################################
//! Called before a type is serialized to set up any special archive state
//! for processing some type
/*! If designing a serializer that needs to set up any kind of special
state or output extra information for a type, specialize this function
for the archive type and the types that require the extra information.
@ingroup Internal */
template <class Archive, class T>
void prologue( Archive & /* archive */, T const & /* data */)
{ }
//! Called after a type is serialized to tear down any special archive state
//! for processing some type
/*! @ingroup Internal */
template <class Archive, class T>
void epilogue( Archive & /* archive */, T const & /* data */)
{ }
// ######################################################################
//! Special flags for archives
/*! AllowEmptyClassElision
This allows for empty classes to be serialized even if they do not provide
a serialization function. Classes with no data members are considered to be
empty. Be warned that if this is enabled and you attempt to serialize an
empty class with improperly formed serialize or load/save functions, no
static error will occur - the error will propogate silently and your
intended serialization functions may not be called. You can manually
ensure that your classes that have custom serialization are correct
by using the traits is_output_serializable and is_input_serializable
in cereal/details/traits.hpp.
@ingroup Internal */
enum Flags { AllowEmptyClassElision = 1 };
// ######################################################################
//! Registers a specific Archive type with cereal
/*! This registration should be done once per archive. A good place to
put this is immediately following the definition of your archive.
Archive registration is only strictly necessary if you wish to
support pointers to polymorphic data types. All archives that
come with cereal are already registered.
@ingroup Internal */
#define CEREAL_REGISTER_ARCHIVE(Archive) \
namespace cereal { namespace detail { \
template <class T, class BindingTag> \
typename polymorphic_serialization_support<Archive, T>::type \
instantiate_polymorphic_binding( T*, Archive*, BindingTag, adl_tag ); \
} } /* end namespaces */
// ######################################################################
//! Defines a class version for some type
/*! Versioning information is optional and adds some small amount of
overhead to serialization. This overhead will occur both in terms of
space in the archive (the version information for each class will be
stored exactly once) as well as runtime (versioned serialization functions
must check to see if they need to load or store version information).
Versioning is useful if you plan on fundamentally changing the way some
type is serialized in the future. Versioned serialization functions
cannot be used to load non-versioned data.
By default, all types have an assumed version value of zero. By
using this macro, you may change the version number associated with
some type. cereal will then use this value as a second parameter
to your serialization functions.
The interface for the serialization functions is nearly identical
to non-versioned serialization with the addition of a second parameter,
const std::uint32_t version, which will be supplied with the correct
version number. Serializing the version number on a save happens
automatically.
Versioning cannot be mixed with non-versioned serialization functions.
Having both types will result result in a compile time error. Data
serialized without versioning cannot be loaded by a serialization
function with added versioning support.
Example interface for versioning on a non-member serialize function:
@code{cpp}
CEREAL_CLASS_VERSION( Mytype, 77 ); // register class version
template <class Archive>
void serialize( Archive & ar, Mytype & t, const std::uint32_t version )
{
// When performing a load, the version associated with the class
// is whatever it was when that data was originally serialized
//
// When we save, we'll use the version that is defined in the macro
if( version >= some_number )
// do this
else
// do that
}
@endcode
Interfaces for other forms of serialization functions is similar. This
macro should be placed at global scope.
@ingroup Utility */
#define CEREAL_CLASS_VERSION(TYPE, VERSION_NUMBER) \
namespace cereal { namespace detail { \
template <> struct Version<TYPE> \
{ \
static const std::uint32_t version; \
static std::uint32_t registerVersion() \
{ \
::cereal::detail::StaticObject<Versions>::getInstance().mapping.emplace( \
std::type_index(typeid(TYPE)).hash_code(), VERSION_NUMBER ); \
return VERSION_NUMBER; \
} \
static void unused() { (void)version; } \
}; /* end Version */ \
const std::uint32_t Version<TYPE>::version = \
Version<TYPE>::registerVersion(); \
} } // end namespaces
// ######################################################################
//! The base output archive class
/*! This is the base output archive for all output archives. If you create
a custom archive class, it should derive from this, passing itself as
a template parameter for the ArchiveType.
The base class provides all of the functionality necessary to
properly forward data to the correct serialization functions.
Individual archives should use a combination of prologue and
epilogue functions together with specializations of serialize, save,
and load to alter the functionality of their serialization.
@tparam ArchiveType The archive type that derives from OutputArchive
@tparam Flags Flags to control advanced functionality. See the Flags
enum for more information.
@ingroup Internal */
template<class ArchiveType, std::uint32_t Flags = 0>
class OutputArchive : public detail::OutputArchiveBase
{
public:
//! Construct the output archive
/*! @param derived A pointer to the derived ArchiveType (pass this from the derived archive) */
OutputArchive(ArchiveType * const derived) : self(derived), itsCurrentPointerId(1), itsCurrentPolymorphicTypeId(1)
{ }
OutputArchive & operator=( OutputArchive const & ) = delete;
//! Serializes all passed in data
/*! This is the primary interface for serializing data with an archive */
template <class ... Types> inline
ArchiveType & operator()( Types && ... args )
{
self->process( std::forward<Types>( args )... );
return *self;
}
/*! @name Boost Transition Layer
Functionality that mirrors the syntax for Boost. This is useful if you are transitioning
a large project from Boost to cereal. The preferred interface for cereal is using operator(). */
//! @{
//! Serializes passed in data
/*! This is a boost compatability layer and is not the preferred way of using
cereal. If you are transitioning from boost, use this until you can
transition to the operator() overload */
template <class T> inline
ArchiveType & operator&( T && arg )
{
self->process( std::forward<T>( arg ) );
return *self;
}
//! Serializes passed in data
/*! This is a boost compatability layer and is not the preferred way of using
cereal. If you are transitioning from boost, use this until you can
transition to the operator() overload */
template <class T> inline
ArchiveType & operator<<( T && arg )
{
self->process( std::forward<T>( arg ) );
return *self;
}
//! @}
//! Registers a shared pointer with the archive
/*! This function is used to track shared pointer targets to prevent
unnecessary saves from taking place if multiple shared pointers
point to the same data.
@internal
@param addr The address (see shared_ptr get()) pointed to by the shared pointer
@return A key that uniquely identifies the pointer */
inline std::uint32_t registerSharedPointer( void const * addr )
{
// Handle null pointers by just returning 0
if(addr == 0) return 0;
auto id = itsSharedPointerMap.find( addr );
if( id == itsSharedPointerMap.end() )
{
auto ptrId = itsCurrentPointerId++;
itsSharedPointerMap.insert( {addr, ptrId} );
return ptrId | detail::msb_32bit; // mask MSB to be 1
}
else
return id->second;
}
//! Registers a polymorphic type name with the archive
/*! This function is used to track polymorphic types to prevent
unnecessary saves of identifying strings used by the polymorphic
support functionality.
@internal
@param name The name to associate with a polymorphic type
@return A key that uniquely identifies the polymorphic type name */
inline std::uint32_t registerPolymorphicType( char const * name )
{
auto id = itsPolymorphicTypeMap.find( name );
if( id == itsPolymorphicTypeMap.end() )
{
auto polyId = itsCurrentPolymorphicTypeId++;
itsPolymorphicTypeMap.insert( {name, polyId} );
return polyId | detail::msb_32bit; // mask MSB to be 1
}
else
return id->second;
}
private:
//! Serializes data after calling prologue, then calls epilogue
template <class T> inline
void process( T && head )
{
prologue( *self, head );
self->processImpl( head );
epilogue( *self, head );
}
//! Unwinds to process all data
template <class T, class ... Other> inline
void process( T && head, Other && ... tail )
{
self->process( std::forward<T>( head ) );
self->process( std::forward<Other>( tail )... );
}
//! Serialization of a virtual_base_class wrapper
/*! \sa virtual_base_class */
template <class T> inline
ArchiveType & processImpl(virtual_base_class<T> const & b)
{
traits::detail::base_class_id id(b.base_ptr);
if(itsBaseClassSet.count(id) == 0)
{
itsBaseClassSet.insert(id);
self->processImpl( *b.base_ptr );
}
return *self;
}
//! Serialization of a base_class wrapper
/*! \sa base_class */
template <class T> inline
ArchiveType & processImpl(base_class<T> const & b)
{
self->processImpl( *b.base_ptr );
return *self;
}
//! Helper macro that expands the requirements for activating an overload
/*! Requirements:
Has the requested serialization function
Does not have version and unversioned at the same time
Is output serializable AND
is specialized for this type of function OR
has no specialization at all */
#define PROCESS_IF(name) \
traits::EnableIf<traits::has_##name<T, ArchiveType>::value, \
!traits::has_invalid_output_versioning<T, ArchiveType>::value, \
(traits::is_output_serializable<T, ArchiveType>::value && \
(traits::is_specialized_##name<T, ArchiveType>::value || \
!traits::is_specialized<T, ArchiveType>::value))> = traits::sfinae
//! Member serialization
template <class T, PROCESS_IF(member_serialize)> inline
ArchiveType & processImpl(T const & t)
{
access::member_serialize(*self, const_cast<T &>(t));
return *self;
}
//! Non member serialization
template <class T, PROCESS_IF(non_member_serialize)> inline
ArchiveType & processImpl(T const & t)
{
CEREAL_SERIALIZE_FUNCTION_NAME(*self, const_cast<T &>(t));
return *self;
}
//! Member split (save)
template <class T, PROCESS_IF(member_save)> inline
ArchiveType & processImpl(T const & t)
{
access::member_save(*self, t);
return *self;
}
//! Non member split (save)
template <class T, PROCESS_IF(non_member_save)> inline
ArchiveType & processImpl(T const & t)
{
CEREAL_SAVE_FUNCTION_NAME(*self, t);
return *self;
}
//! Member split (save_minimal)
template <class T, PROCESS_IF(member_save_minimal)> inline
ArchiveType & processImpl(T const & t)
{
self->process( access::member_save_minimal(*self, t) );
return *self;
}
//! Non member split (save_minimal)
template <class T, PROCESS_IF(non_member_save_minimal)> inline
ArchiveType & processImpl(T const & t)
{
self->process( CEREAL_SAVE_MINIMAL_FUNCTION_NAME(*self, t) );
return *self;
}
//! Empty class specialization
template <class T, traits::EnableIf<(Flags & AllowEmptyClassElision),
!traits::is_output_serializable<T, ArchiveType>::value,
std::is_empty<T>::value> = traits::sfinae> inline
ArchiveType & processImpl(T const &)
{
return *self;
}
//! No matching serialization
/*! Invalid if we have invalid output versioning or
we are not output serializable, and either
don't allow empty class ellision or allow it but are not serializing an empty class */
template <class T, traits::EnableIf<traits::has_invalid_output_versioning<T, ArchiveType>::value ||
(!traits::is_output_serializable<T, ArchiveType>::value &&
(!(Flags & AllowEmptyClassElision) || ((Flags & AllowEmptyClassElision) && !std::is_empty<T>::value)))> = traits::sfinae> inline
ArchiveType & processImpl(T const &)
{
static_assert(traits::detail::count_output_serializers<T, ArchiveType>::value != 0,
"cereal could not find any output serialization functions for the provided type and archive combination. \n\n "
"Types must either have a serialize function, load/save pair, or load_minimal/save_minimal pair (you may not mix these). \n "
"Serialize functions generally have the following signature: \n\n "
"template<class Archive> \n "
" void serialize(Archive & ar) \n "
" { \n "
" ar( member1, member2, member3 ); \n "
" } \n\n " );
static_assert(traits::detail::count_output_serializers<T, ArchiveType>::value < 2,
"cereal found more than one compatible output serialization function for the provided type and archive combination. \n\n "
"Types must either have a serialize function, load/save pair, or load_minimal/save_minimal pair (you may not mix these). \n "
"Use specialization (see access.hpp) if you need to disambiguate between serialize vs load/save functions. \n "
"Note that serialization functions can be inherited which may lead to the aforementioned ambiguities. \n "
"In addition, you may not mix versioned with non-versioned serialization functions. \n\n ");
return *self;
}
//! Registers a class version with the archive and serializes it if necessary
/*! If this is the first time this class has been serialized, we will record its
version number and serialize that.
@tparam T The type of the class being serialized
@param version The version number associated with it */
template <class T> inline
std::uint32_t registerClassVersion()
{
static const auto hash = std::type_index(typeid(T)).hash_code();
const auto insertResult = itsVersionedTypes.insert( hash );
const auto version =
detail::StaticObject<detail::Versions>::getInstance().find( hash, detail::Version<T>::version );
if( insertResult.second ) // insertion took place, serialize the version number
process( make_nvp<ArchiveType>("cereal_class_version", version) );
return version;
}
//! Member serialization
/*! Versioning implementation */
template <class T, PROCESS_IF(member_versioned_serialize)> inline
ArchiveType & processImpl(T const & t)
{
access::member_serialize(*self, const_cast<T &>(t), registerClassVersion<T>());
return *self;
}
//! Non member serialization
/*! Versioning implementation */
template <class T, PROCESS_IF(non_member_versioned_serialize)> inline
ArchiveType & processImpl(T const & t)
{
CEREAL_SERIALIZE_FUNCTION_NAME(*self, const_cast<T &>(t), registerClassVersion<T>());
return *self;
}
//! Member split (save)
/*! Versioning implementation */
template <class T, PROCESS_IF(member_versioned_save)> inline
ArchiveType & processImpl(T const & t)
{
access::member_save(*self, t, registerClassVersion<T>());
return *self;
}
//! Non member split (save)
/*! Versioning implementation */
template <class T, PROCESS_IF(non_member_versioned_save)> inline
ArchiveType & processImpl(T const & t)
{
CEREAL_SAVE_FUNCTION_NAME(*self, t, registerClassVersion<T>());
return *self;
}
//! Member split (save_minimal)
/*! Versioning implementation */
template <class T, PROCESS_IF(member_versioned_save_minimal)> inline
ArchiveType & processImpl(T const & t)
{
self->process( access::member_save_minimal(*self, t, registerClassVersion<T>()) );
return *self;
}
//! Non member split (save_minimal)
/*! Versioning implementation */
template <class T, PROCESS_IF(non_member_versioned_save_minimal)> inline
ArchiveType & processImpl(T const & t)
{
self->process( CEREAL_SAVE_MINIMAL_FUNCTION_NAME(*self, t, registerClassVersion<T>()) );
return *self;
}
#undef PROCESS_IF
private:
ArchiveType * const self;
//! A set of all base classes that have been serialized
std::unordered_set<traits::detail::base_class_id, traits::detail::base_class_id_hash> itsBaseClassSet;
//! Maps from addresses to pointer ids
std::unordered_map<void const *, std::uint32_t> itsSharedPointerMap;
//! The id to be given to the next pointer
std::uint32_t itsCurrentPointerId;
//! Maps from polymorphic type name strings to ids
std::unordered_map<char const *, std::uint32_t> itsPolymorphicTypeMap;
//! The id to be given to the next polymorphic type name
std::uint32_t itsCurrentPolymorphicTypeId;
//! Keeps track of classes that have versioning information associated with them
std::unordered_set<size_type> itsVersionedTypes;
}; // class OutputArchive
// ######################################################################
//! The base input archive class
/*! This is the base input archive for all input archives. If you create
a custom archive class, it should derive from this, passing itself as
a template parameter for the ArchiveType.
The base class provides all of the functionality necessary to
properly forward data to the correct serialization functions.
Individual archives should use a combination of prologue and
epilogue functions together with specializations of serialize, save,
and load to alter the functionality of their serialization.
@tparam ArchiveType The archive type that derives from InputArchive
@tparam Flags Flags to control advanced functionality. See the Flags
enum for more information.
@ingroup Internal */
template<class ArchiveType, std::uint32_t Flags = 0>
class InputArchive : public detail::InputArchiveBase
{
public:
//! Construct the output archive
/*! @param derived A pointer to the derived ArchiveType (pass this from the derived archive) */
InputArchive(ArchiveType * const derived) :
self(derived),
itsBaseClassSet(),
itsSharedPointerMap(),
itsPolymorphicTypeMap(),
itsVersionedTypes()
{ }
InputArchive & operator=( InputArchive const & ) = delete;
//! Serializes all passed in data
/*! This is the primary interface for serializing data with an archive */
template <class ... Types> inline
ArchiveType & operator()( Types && ... args )
{
process( std::forward<Types>( args )... );
return *self;
}
/*! @name Boost Transition Layer
Functionality that mirrors the syntax for Boost. This is useful if you are transitioning
a large project from Boost to cereal. The preferred interface for cereal is using operator(). */
//! @{
//! Serializes passed in data
/*! This is a boost compatability layer and is not the preferred way of using
cereal. If you are transitioning from boost, use this until you can
transition to the operator() overload */
template <class T> inline
ArchiveType & operator&( T && arg )
{
self->process( std::forward<T>( arg ) );
return *self;
}
//! Serializes passed in data
/*! This is a boost compatability layer and is not the preferred way of using
cereal. If you are transitioning from boost, use this until you can
transition to the operator() overload */
template <class T> inline
ArchiveType & operator>>( T && arg )
{
self->process( std::forward<T>( arg ) );
return *self;
}
//! @}
//! Retrieves a shared pointer given a unique key for it
/*! This is used to retrieve a previously registered shared_ptr
which has already been loaded.
@param id The unique id that was serialized for the pointer
@return A shared pointer to the data
@throw Exception if the id does not exist */
inline std::shared_ptr<void> getSharedPointer(std::uint32_t const id)
{
if(id == 0) return std::shared_ptr<void>(nullptr);
auto iter = itsSharedPointerMap.find( id );
if(iter == itsSharedPointerMap.end())
throw Exception("Error while trying to deserialize a smart pointer. Could not find id " + std::to_string(id));
return iter->second;
}
//! Registers a shared pointer to its unique identifier
/*! After a shared pointer has been allocated for the first time, it should
be registered with its loaded id for future references to it.
@param id The unique identifier for the shared pointer
@param ptr The actual shared pointer */
inline void registerSharedPointer(std::uint32_t const id, std::shared_ptr<void> ptr)
{
std::uint32_t const stripped_id = id & ~detail::msb_32bit;
itsSharedPointerMap[stripped_id] = ptr;
}
//! Retrieves the string for a polymorphic type given a unique key for it
/*! This is used to retrieve a string previously registered during
a polymorphic load.
@param id The unique id that was serialized for the polymorphic type
@return The string identifier for the tyep */
inline std::string getPolymorphicName(std::uint32_t const id)
{
auto name = itsPolymorphicTypeMap.find( id );
if(name == itsPolymorphicTypeMap.end())
{
throw Exception("Error while trying to deserialize a polymorphic pointer. Could not find type id " + std::to_string(id));
}
return name->second;
}
//! Registers a polymorphic name string to its unique identifier
/*! After a polymorphic type has been loaded for the first time, it should
be registered with its loaded id for future references to it.
@param id The unique identifier for the polymorphic type
@param name The name associated with the tyep */
inline void registerPolymorphicName(std::uint32_t const id, std::string const & name)
{
std::uint32_t const stripped_id = id & ~detail::msb_32bit;
itsPolymorphicTypeMap.insert( {stripped_id, name} );
}
private:
//! Serializes data after calling prologue, then calls epilogue
template <class T> inline
void process( T && head )
{
prologue( *self, head );
self->processImpl( head );
epilogue( *self, head );
}
//! Unwinds to process all data
template <class T, class ... Other> inline
void process( T && head, Other && ... tail )
{
process( std::forward<T>( head ) );
process( std::forward<Other>( tail )... );
}
//! Serialization of a virtual_base_class wrapper
/*! \sa virtual_base_class */
template <class T> inline
ArchiveType & processImpl(virtual_base_class<T> & b)
{
traits::detail::base_class_id id(b.base_ptr);
if(itsBaseClassSet.count(id) == 0)
{
itsBaseClassSet.insert(id);
self->processImpl( *b.base_ptr );
}
return *self;
}
//! Serialization of a base_class wrapper
/*! \sa base_class */
template <class T> inline
ArchiveType & processImpl(base_class<T> & b)
{
self->processImpl( *b.base_ptr );
return *self;
}
//! Helper macro that expands the requirements for activating an overload
/*! Requirements:
Has the requested serialization function
Does not have version and unversioned at the same time
Is input serializable AND
is specialized for this type of function OR
has no specialization at all */
#define PROCESS_IF(name) \
traits::EnableIf<traits::has_##name<T, ArchiveType>::value, \
!traits::has_invalid_input_versioning<T, ArchiveType>::value, \
(traits::is_input_serializable<T, ArchiveType>::value && \
(traits::is_specialized_##name<T, ArchiveType>::value || \
!traits::is_specialized<T, ArchiveType>::value))> = traits::sfinae
//! Member serialization
template <class T, PROCESS_IF(member_serialize)> inline
ArchiveType & processImpl(T & t)
{
access::member_serialize(*self, t);
return *self;
}
//! Non member serialization
template <class T, PROCESS_IF(non_member_serialize)> inline
ArchiveType & processImpl(T & t)
{
CEREAL_SERIALIZE_FUNCTION_NAME(*self, t);
return *self;
}
//! Member split (load)
template <class T, PROCESS_IF(member_load)> inline
ArchiveType & processImpl(T & t)
{
access::member_load(*self, t);
return *self;
}
//! Non member split (load)
template <class T, PROCESS_IF(non_member_load)> inline
ArchiveType & processImpl(T & t)
{
CEREAL_LOAD_FUNCTION_NAME(*self, t);
return *self;
}
//! Member split (load_minimal)
template <class T, PROCESS_IF(member_load_minimal)> inline
ArchiveType & processImpl(T & t)
{
using OutArchiveType = typename traits::detail::get_output_from_input<ArchiveType>::type;
typename traits::has_member_save_minimal<T, OutArchiveType>::type value;
self->process( value );
access::member_load_minimal(*self, t, value);
return *self;
}
//! Non member split (load_minimal)
template <class T, PROCESS_IF(non_member_load_minimal)> inline
ArchiveType & processImpl(T & t)
{
using OutArchiveType = typename traits::detail::get_output_from_input<ArchiveType>::type;
typename traits::has_non_member_save_minimal<T, OutArchiveType>::type value;
self->process( value );
CEREAL_LOAD_MINIMAL_FUNCTION_NAME(*self, t, value);
return *self;
}
//! Empty class specialization
template <class T, traits::EnableIf<(Flags & AllowEmptyClassElision),
!traits::is_input_serializable<T, ArchiveType>::value,
std::is_empty<T>::value> = traits::sfinae> inline
ArchiveType & processImpl(T const &)
{
return *self;
}
//! No matching serialization
/*! Invalid if we have invalid input versioning or
we are not input serializable, and either
don't allow empty class ellision or allow it but are not serializing an empty class */
template <class T, traits::EnableIf<traits::has_invalid_input_versioning<T, ArchiveType>::value ||
(!traits::is_input_serializable<T, ArchiveType>::value &&
(!(Flags & AllowEmptyClassElision) || ((Flags & AllowEmptyClassElision) && !std::is_empty<T>::value)))> = traits::sfinae> inline
ArchiveType & processImpl(T const &)
{
static_assert(traits::detail::count_input_serializers<T, ArchiveType>::value != 0,
"cereal could not find any input serialization functions for the provided type and archive combination. \n\n "
"Types must either have a serialize function, load/save pair, or load_minimal/save_minimal pair (you may not mix these). \n "
"Serialize functions generally have the following signature: \n\n "
"template<class Archive> \n "
" void serialize(Archive & ar) \n "
" { \n "
" ar( member1, member2, member3 ); \n "
" } \n\n " );
static_assert(traits::detail::count_input_serializers<T, ArchiveType>::value < 2,
"cereal found more than one compatible input serialization function for the provided type and archive combination. \n\n "
"Types must either have a serialize function, load/save pair, or load_minimal/save_minimal pair (you may not mix these). \n "
"Use specialization (see access.hpp) if you need to disambiguate between serialize vs load/save functions. \n "
"Note that serialization functions can be inherited which may lead to the aforementioned ambiguities. \n "
"In addition, you may not mix versioned with non-versioned serialization functions. \n\n ");
return *self;
}
//! Registers a class version with the archive and serializes it if necessary
/*! If this is the first time this class has been serialized, we will record its
version number and serialize that.
@tparam T The type of the class being serialized
@param version The version number associated with it */
template <class T> inline
std::uint32_t loadClassVersion()
{
static const auto hash = std::type_index(typeid(T)).hash_code();
auto lookupResult = itsVersionedTypes.find( hash );
if( lookupResult != itsVersionedTypes.end() ) // already exists
return lookupResult->second;
else // need to load
{
std::uint32_t version;
process( make_nvp<ArchiveType>("cereal_class_version", version) );
itsVersionedTypes.emplace_hint( lookupResult, hash, version );
return version;
}
}
//! Member serialization
/*! Versioning implementation */
template <class T, PROCESS_IF(member_versioned_serialize)> inline
ArchiveType & processImpl(T & t)
{
const auto version = loadClassVersion<T>();
access::member_serialize(*self, t, version);
return *self;
}
//! Non member serialization
/*! Versioning implementation */
template <class T, PROCESS_IF(non_member_versioned_serialize)> inline
ArchiveType & processImpl(T & t)
{
const auto version = loadClassVersion<T>();
CEREAL_SERIALIZE_FUNCTION_NAME(*self, t, version);
return *self;
}
//! Member split (load)
/*! Versioning implementation */
template <class T, PROCESS_IF(member_versioned_load)> inline
ArchiveType & processImpl(T & t)
{
const auto version = loadClassVersion<T>();
access::member_load(*self, t, version);
return *self;
}
//! Non member split (load)
/*! Versioning implementation */
template <class T, PROCESS_IF(non_member_versioned_load)> inline
ArchiveType & processImpl(T & t)
{
const auto version = loadClassVersion<T>();
CEREAL_LOAD_FUNCTION_NAME(*self, t, version);
return *self;
}
//! Member split (load_minimal)
/*! Versioning implementation */
template <class T, PROCESS_IF(member_versioned_load_minimal)> inline
ArchiveType & processImpl(T & t)
{
using OutArchiveType = typename traits::detail::get_output_from_input<ArchiveType>::type;
const auto version = loadClassVersion<T>();
typename traits::has_member_versioned_save_minimal<T, OutArchiveType>::type value;
self->process(value);
access::member_load_minimal(*self, t, value, version);
return *self;
}
//! Non member split (load_minimal)
/*! Versioning implementation */
template <class T, PROCESS_IF(non_member_versioned_load_minimal)> inline
ArchiveType & processImpl(T & t)
{
using OutArchiveType = typename traits::detail::get_output_from_input<ArchiveType>::type;
const auto version = loadClassVersion<T>();
typename traits::has_non_member_versioned_save_minimal<T, OutArchiveType>::type value;
self->process(value);
CEREAL_LOAD_MINIMAL_FUNCTION_NAME(*self, t, value, version);
return *self;
}
#undef PROCESS_IF
private:
ArchiveType * const self;
//! A set of all base classes that have been serialized
std::unordered_set<traits::detail::base_class_id, traits::detail::base_class_id_hash> itsBaseClassSet;
//! Maps from pointer ids to metadata
std::unordered_map<std::uint32_t, std::shared_ptr<void>> itsSharedPointerMap;
//! Maps from name ids to names
std::unordered_map<std::uint32_t, std::string> itsPolymorphicTypeMap;
//! Maps from type hash codes to version numbers
std::unordered_map<std::size_t, std::uint32_t> itsVersionedTypes;
}; // class InputArchive
} // namespace cereal
// This include needs to come after things such as binary_data, make_nvp, etc
#include <cereal/types/common.hpp>
#endif // CEREAL_CEREAL_HPP_
/*! \file helpers.hpp
\brief Internal helper functionality
\ingroup Internal */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_DETAILS_HELPERS_HPP_
#define CEREAL_DETAILS_HELPERS_HPP_
#include <type_traits>
#include <cstdint>
#include <utility>
#include <memory>
#include <unordered_map>
#include <stdexcept>
#include <cereal/macros.hpp>
#include <cereal/details/static_object.hpp>
namespace cereal
{
// ######################################################################
//! An exception class thrown when things go wrong at runtime
/*! @ingroup Utility */
struct Exception : public std::runtime_error
{
explicit Exception( const std::string & what_ ) : std::runtime_error(what_) {}
explicit Exception( const char * what_ ) : std::runtime_error(what_) {}
};
// ######################################################################
//! The size type used by cereal
/*! To ensure compatability between 32, 64, etc bit machines, we need to use
a fixed size type instead of size_t, which may vary from machine to
machine. */
using size_type = uint64_t;
// forward decls
class BinaryOutputArchive;
class BinaryInputArchive;
// ######################################################################
namespace detail
{
struct NameValuePairCore {}; //!< Traits struct for NVPs
}
//! For holding name value pairs
/*! This pairs a name (some string) with some value such that an archive
can potentially take advantage of the pairing.
In serialization functions, NameValuePairs are usually created like so:
@code{.cpp}
struct MyStruct
{
int a, b, c, d, e;
template<class Archive>
void serialize(Archive & archive)
{
archive( CEREAL_NVP(a),
CEREAL_NVP(b),
CEREAL_NVP(c),
CEREAL_NVP(d),
CEREAL_NVP(e) );
}
};
@endcode
Alternatively, you can give you data members custom names like so:
@code{.cpp}
struct MyStruct
{
int a, b, my_embarrassing_variable_name, d, e;
template<class Archive>
void serialize(Archive & archive)
{
archive( CEREAL_NVP(a),
CEREAL_NVP(b),
cereal::make_nvp("var", my_embarrassing_variable_name) );
CEREAL_NVP(d),
CEREAL_NVP(e) );
}
};
@endcode
There is a slight amount of overhead to creating NameValuePairs, so there
is a third method which will elide the names when they are not used by
the Archive:
@code{.cpp}
struct MyStruct
{
int a, b;
template<class Archive>
void serialize(Archive & archive)
{
archive( cereal::make_nvp<Archive>(a),
cereal::make_nvp<Archive>(b) );
}
};
@endcode
This third method is generally only used when providing generic type
support. Users writing their own serialize functions will normally
explicitly control whether they want to use NVPs or not.
@internal */
template <class T>
class NameValuePair : detail::NameValuePairCore
{
private:
// If we get passed an array, keep the type as is, otherwise store
// a reference if we were passed an l value reference, else copy the value
using Type = typename std::conditional<std::is_array<typename std::remove_reference<T>::type>::value,
typename std::remove_cv<T>::type,
typename std::conditional<std::is_lvalue_reference<T>::value,
T,
typename std::decay<T>::type>::type>::type;
// prevent nested nvps
static_assert( !std::is_base_of<detail::NameValuePairCore, T>::value,
"Cannot pair a name to a NameValuePair" );
NameValuePair & operator=( NameValuePair const & ) = delete;
public:
//! Constructs a new NameValuePair
/*! @param n The name of the pair
@param v The value to pair. Ideally this should be an l-value reference so that
the value can be both loaded and saved to. If you pass an r-value reference,
the NameValuePair will store a copy of it instead of a reference. Thus you should
only pass r-values in cases where this makes sense, such as the result of some
size() call.
@internal */
NameValuePair( char const * n, T && v ) : name(n), value(std::forward<T>(v)) {}
char const * name;
Type value;
};
//! A specialization of make_nvp<> that simply forwards the value for binary archives
/*! @relates NameValuePair
@internal */
template<class Archive, class T> inline
typename
std::enable_if<std::is_same<Archive, ::cereal::BinaryInputArchive>::value ||
std::is_same<Archive, ::cereal::BinaryOutputArchive>::value,
T && >::type
make_nvp( const char *, T && value )
{
return std::forward<T>(value);
}
//! A specialization of make_nvp<> that actually creates an nvp for non-binary archives
/*! @relates NameValuePair
@internal */
template<class Archive, class T> inline
typename
std::enable_if<!std::is_same<Archive, ::cereal::BinaryInputArchive>::value &&
!std::is_same<Archive, ::cereal::BinaryOutputArchive>::value,
NameValuePair<T> >::type
make_nvp( const char * name, T && value)
{
return {name, std::forward<T>(value)};
}
//! Convenience for creating a templated NVP
/*! For use in inteneral generic typing functions which have an
Archive type declared
@internal */
#define CEREAL_NVP_(name, value) ::cereal::make_nvp<Archive>(name, value)
// ######################################################################
//! A wrapper around data that can be serialized in a binary fashion
/*! This class is used to demarcate data that can safely be serialized
as a binary chunk of data. Individual archives can then choose how
best represent this during serialization.
@internal */
template <class T>
struct BinaryData
{
//! Internally store the pointer as a void *, keeping const if created with
//! a const pointer
using PT = typename std::conditional<std::is_const<typename std::remove_pointer<T>::type>::value,
const void *,
void *>::type;
BinaryData( T && d, uint64_t s ) : data(std::forward<T>(d)), size(s) {}
PT data; //!< pointer to beginning of data
uint64_t size; //!< size in bytes
};
// ######################################################################
namespace detail
{
// base classes for type checking
/* The rtti virtual function only exists to enable an archive to
be used in a polymorphic fashion, if necessary. See the
archive adapters for an example of this */
class OutputArchiveBase { private: virtual void rtti(){} };
class InputArchiveBase { private: virtual void rtti(){} };
// forward decls for polymorphic support
template <class Archive, class T> struct polymorphic_serialization_support;
struct adl_tag;
// used during saving pointers
static const int32_t msb_32bit = 0x80000000;
static const int32_t msb2_32bit = 0x40000000;
}
// ######################################################################
//! A wrapper around size metadata
/*! This class provides a way for archives to have more flexibility over how
they choose to serialize size metadata for containers. For some archive
types, the size may be implicitly encoded in the output (e.g. JSON) and
not need an explicit entry. Specializing serialize or load/save for
your archive and SizeTags allows you to choose what happens.
@internal */
template <class T>
class SizeTag
{
private:
// Store a reference if passed an lvalue reference, otherwise
// make a copy of the data
using Type = typename std::conditional<std::is_lvalue_reference<T>::value,
T,
typename std::decay<T>::type>::type;
SizeTag & operator=( SizeTag const & ) = delete;
public:
SizeTag( T && sz ) : size(std::forward<T>(sz)) {}
Type size;
};
// ######################################################################
//! A wrapper around a key and value for serializing data into maps.
/*! This class just provides a grouping of keys and values into a struct for
human readable archives. For example, XML archives will use this wrapper
to write maps like so:
@code{.xml}
<mymap>
<item0>
<key>MyFirstKey</key>
<value>MyFirstValue</value>
</item0>
<item1>
<key>MySecondKey</key>
<value>MySecondValue</value>
</item1>
</mymap>
@endcode
\sa make_map_item
@internal */
template <class Key, class Value>
struct MapItem
{
using KeyType = typename std::conditional<
std::is_lvalue_reference<Key>::value,
Key,
typename std::decay<Key>::type>::type;
using ValueType = typename std::conditional<
std::is_lvalue_reference<Value>::value,
Value,
typename std::decay<Value>::type>::type;
//! Construct a MapItem from a key and a value
/*! @internal */
MapItem( Key && key_, Value && value_ ) : key(std::forward<Key>(key_)), value(std::forward<Value>(value_)) {}
MapItem & operator=( MapItem const & ) = delete;
KeyType key;
ValueType value;
//! Serialize the MapItem with the NVPs "key" and "value"
template <class Archive> inline
void CEREAL_SERIALIZE_FUNCTION_NAME(Archive & archive)
{
archive( make_nvp<Archive>("key", key),
make_nvp<Archive>("value", value) );
}
};
//! Create a MapItem so that human readable archives will group keys and values together
/*! @internal
@relates MapItem */
template <class KeyType, class ValueType> inline
MapItem<KeyType, ValueType> make_map_item(KeyType && key, ValueType && value)
{
return {std::forward<KeyType>(key), std::forward<ValueType>(value)};
}
namespace detail
{
//! Tag for Version, which due to its anonymous namespace, becomes a different
//! type in each translation unit
/*! This allows CEREAL_CLASS_VERSION to be safely called in a header file */
namespace{ struct version_binding_tag {}; }
// ######################################################################
//! Version information class
/*! This is the base case for classes that have not been explicitly
registered */
template <class T, class BindingTag = version_binding_tag> struct Version
{
static const std::uint32_t version = 0;
// we don't need to explicitly register these types since they
// always get a version number of 0
};
//! Holds all registered version information
struct Versions
{
std::unordered_map<std::size_t, std::uint32_t> mapping;
std::uint32_t find( std::size_t hash, std::uint32_t version )
{
const auto result = mapping.emplace( hash, version );
return result.first->second;
}
}; // struct Versions
} // namespace detail
} // namespace cereal
#endif // CEREAL_DETAILS_HELPERS_HPP_
/*! \file polymorphic_impl.hpp
\brief Internal polymorphism support
\ingroup Internal */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* This code is heavily inspired by the boost serialization implementation by the following authors
(C) Copyright 2002 Robert Ramey - http://www.rrsd.com .
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See http://www.boost.org/LICENSE_1_0.txt)
See http://www.boost.org for updates, documentation, and revision history.
(C) Copyright 2006 David Abrahams - http://www.boost.org.
See /boost/serialization/export.hpp and /boost/archive/detail/register_archive.hpp for their
implementation.
*/
#ifndef CEREAL_DETAILS_POLYMORPHIC_IMPL_HPP_
#define CEREAL_DETAILS_POLYMORPHIC_IMPL_HPP_
#include <cereal/details/static_object.hpp>
#include <cereal/types/memory.hpp>
#include <cereal/types/string.hpp>
#include <functional>
#include <typeindex>
#include <map>
//! Binds a polymorhic type to all registered archives
/*! This binds a polymorphic type to all compatible registered archives that
have been registered with CEREAL_REGISTER_ARCHIVE. This must be called
after all archives are registered (usually after the archives themselves
have been included). */
#define CEREAL_BIND_TO_ARCHIVES(T) \
namespace cereal { \
namespace detail { \
template<> \
struct init_binding<T> { \
static bind_to_archives<T> const & b; \
static void unused() { (void)b; } \
}; \
bind_to_archives<T> const & init_binding<T>::b = \
::cereal::detail::StaticObject< \
bind_to_archives<T> \
>::getInstance().bind(); \
}} /* end namespaces */
namespace cereal
{
namespace detail
{
//! Binds a compile time type with a user defined string
template <class T>
struct binding_name {};
//! A structure holding a map from type_indices to output serializer functions
/*! A static object of this map should be created for each registered archive
type, containing entries for every registered type that describe how to
properly cast the type to its real type in polymorphic scenarios for
shared_ptr, weak_ptr, and unique_ptr. */
template <class Archive>
struct OutputBindingMap
{
//! A serializer function
/*! Serializer functions return nothing and take an archive as
their first parameter (will be cast properly inside the function,
and a pointer to actual data (contents of smart_ptr's get() function)
as their second parameter */
typedef std::function<void(void*, void const *)> Serializer;
//! Struct containing the serializer functions for all pointer types
struct Serializers
{
Serializer shared_ptr, //!< Serializer function for shared/weak pointers
unique_ptr; //!< Serializer function for unique pointers
};
//! A map of serializers for pointers of all registered types
std::map<std::type_index, Serializers> map;
};
//! An empty noop deleter
template<class T> struct EmptyDeleter { void operator()(T *) const {} };
//! A structure holding a map from type name strings to input serializer functions
/*! A static object of this map should be created for each registered archive
type, containing entries for every registered type that describe how to
properly cast the type to its real type in polymorphic scenarios for
shared_ptr, weak_ptr, and unique_ptr. */
template <class Archive>
struct InputBindingMap
{
//! Shared ptr serializer function
/*! Serializer functions return nothing and take an archive as
their first parameter (will be cast properly inside the function,
and a shared_ptr (or unique_ptr for the unique case) of any base
type. Internally it will properly be loaded and cast to the
correct type. */
typedef std::function<void(void*, std::shared_ptr<void> & )> SharedSerializer;
//! Unique ptr serializer function
typedef std::function<void(void*, std::unique_ptr<void, EmptyDeleter<void>> & )> UniqueSerializer;
//! Struct containing the serializer functions for all pointer types
struct Serializers
{
SharedSerializer shared_ptr; //!< Serializer function for shared/weak pointers
UniqueSerializer unique_ptr; //!< Serializer function for unique pointers
};
//! A map of serializers for pointers of all registered types
std::map<std::string, Serializers> map;
};
// forward decls for archives from cereal.hpp
class InputArchiveBase;
class OutputArchiveBase;
//! Creates a binding (map entry) between an input archive type and a polymorphic type
/*! Bindings are made when types are registered, assuming that at least one
archive has already been registered. When this struct is created,
it will insert (at run time) an entry into a map that properly handles
casting for serializing polymorphic objects */
template <class Archive, class T> struct InputBindingCreator
{
//! Initialize the binding
InputBindingCreator()
{
auto & map = StaticObject<InputBindingMap<Archive>>::getInstance().map;
auto key = std::string(binding_name<T>::name());
auto lb = map.lower_bound(key);
if (lb != map.end() && lb->first == key)
return;
typename InputBindingMap<Archive>::Serializers serializers;
serializers.shared_ptr =
[](void * arptr, std::shared_ptr<void> & dptr)
{
Archive & ar = *static_cast<Archive*>(arptr);
std::shared_ptr<T> ptr;
ar( CEREAL_NVP_("ptr_wrapper", ::cereal::memory_detail::make_ptr_wrapper(ptr)) );
dptr = ptr;
};
serializers.unique_ptr =
[](void * arptr, std::unique_ptr<void, EmptyDeleter<void>> & dptr)
{
Archive & ar = *static_cast<Archive*>(arptr);
std::unique_ptr<T> ptr;
ar( CEREAL_NVP_("ptr_wrapper", ::cereal::memory_detail::make_ptr_wrapper(ptr)) );
dptr.reset(ptr.release());
};
map.insert( lb, { std::move(key), std::move(serializers) } );
}
};
//! Creates a binding (map entry) between an output archive type and a polymorphic type
/*! Bindings are made when types are registered, assuming that at least one
archive has already been registered. When this struct is created,
it will insert (at run time) an entry into a map that properly handles
casting for serializing polymorphic objects */
template <class Archive, class T> struct OutputBindingCreator
{
//! Writes appropriate metadata to the archive for this polymorphic type
static void writeMetadata(Archive & ar)
{
// Register the polymorphic type name with the archive, and get the id
char const * name = binding_name<T>::name();
std::uint32_t id = ar.registerPolymorphicType(name);
// Serialize the id
ar( CEREAL_NVP_("polymorphic_id", id) );
// If the msb of the id is 1, then the type name is new, and we should serialize it
if( id & detail::msb_32bit )
{
std::string namestring(name);
ar( CEREAL_NVP_("polymorphic_name", namestring) );
}
}
//! Holds a properly typed shared_ptr to the polymorphic type
class PolymorphicSharedPointerWrapper
{
public:
/*! Wrap a raw polymorphic pointer in a shared_ptr to its true type
The wrapped pointer will not be responsible for ownership of the held pointer
so it will not attempt to destroy it; instead the refcount of the wrapped
pointer will be tied to a fake 'ownership pointer' that will do nothing
when it ultimately goes out of scope.
The main reason for doing this, other than not to destroy the true object
with our wrapper pointer, is to avoid meddling with the internal reference
count in a polymorphic type that inherits from std::enable_shared_from_this.
@param dptr A void pointer to the contents of the shared_ptr to serialize */
PolymorphicSharedPointerWrapper( void const * dptr ) : refCount()
{
#ifdef _LIBCPP_VERSION
// libc++ needs this hacky workaround, see http://llvm.org/bugs/show_bug.cgi?id=18843
wrappedPtr = std::shared_ptr<T const>(
std::const_pointer_cast<T const>(
std::shared_ptr<T>( refCount, static_cast<T *>(const_cast<void *>(dptr) ))));
#else // NOT _LIBCPP_VERSION
wrappedPtr = std::shared_ptr<T const>( refCount, static_cast<T const *>(dptr) );
#endif // _LIBCPP_VERSION
}
//! Get the wrapped shared_ptr */
inline std::shared_ptr<T const> const & operator()() const { return wrappedPtr; }
private:
std::shared_ptr<void> refCount; //!< The ownership pointer
std::shared_ptr<T const> wrappedPtr; //!< The wrapped pointer
};
//! Does the actual work of saving a polymorphic shared_ptr
/*! This function will properly create a shared_ptr from the void * that is passed in
before passing it to the archive for serialization.
In addition, this will also preserve the state of any internal enable_shared_from_this mechanisms
@param ar The archive to serialize to
@param dptr Pointer to the actual data held by the shared_ptr */
static inline void savePolymorphicSharedPtr( Archive & ar, void const * dptr, std::true_type /* has_shared_from_this */ )
{
::cereal::memory_detail::EnableSharedStateHelper<T> state( static_cast<T *>(const_cast<void *>(dptr)) );
PolymorphicSharedPointerWrapper psptr( dptr );
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( psptr() ) ) );
}
//! Does the actual work of saving a polymorphic shared_ptr
/*! This function will properly create a shared_ptr from the void * that is passed in
before passing it to the archive for serialization.
This version is for types that do not inherit from std::enable_shared_from_this.
@param ar The archive to serialize to
@param dptr Pointer to the actual data held by the shared_ptr */
static inline void savePolymorphicSharedPtr( Archive & ar, void const * dptr, std::false_type /* has_shared_from_this */ )
{
PolymorphicSharedPointerWrapper psptr( dptr );
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( psptr() ) ) );
}
//! Initialize the binding
OutputBindingCreator()
{
auto & map = StaticObject<OutputBindingMap<Archive>>::getInstance().map;
auto key = std::type_index(typeid(T));
auto lb = map.lower_bound(key);
if (lb != map.end() && lb->first == key)
return;
typename OutputBindingMap<Archive>::Serializers serializers;
serializers.shared_ptr =
[&](void * arptr, void const * dptr)
{
Archive & ar = *static_cast<Archive*>(arptr);
writeMetadata(ar);
#ifdef _MSC_VER
savePolymorphicSharedPtr( ar, dptr, ::cereal::traits::has_shared_from_this<T>::type() ); // MSVC doesn't like typename here
#else // not _MSC_VER
savePolymorphicSharedPtr( ar, dptr, typename ::cereal::traits::has_shared_from_this<T>::type() );
#endif // _MSC_VER
};
serializers.unique_ptr =
[&](void * arptr, void const * dptr)
{
Archive & ar = *static_cast<Archive*>(arptr);
writeMetadata(ar);
std::unique_ptr<T const, EmptyDeleter<T const>> const ptr(static_cast<T const *>(dptr));
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper(ptr)) );
};
map.insert( { std::move(key), std::move(serializers) } );
}
};
//! Used to help out argument dependent lookup for finding potential overloads
//! of instantiate_polymorphic_binding
struct adl_tag {};
//! Tag for init_binding, bind_to_archives and instantiate_polymorphic_binding. Due to the use of anonymous
//! namespace it becomes a different type in each translation unit.
namespace { struct polymorphic_binding_tag {}; }
//! Causes the static object bindings between an archive type and a serializable type T
template <class Archive, class T>
struct create_bindings
{
static const InputBindingCreator<Archive, T> &
load(std::true_type)
{
return cereal::detail::StaticObject<InputBindingCreator<Archive, T>>::getInstance();
}
static const OutputBindingCreator<Archive, T> &
save(std::true_type)
{
return cereal::detail::StaticObject<OutputBindingCreator<Archive, T>>::getInstance();
}
inline static void load(std::false_type) {}
inline static void save(std::false_type) {}
};
//! When specialized, causes the compiler to instantiate its parameter
template <void(*)()>
struct instantiate_function {};
/*! This struct is used as the return type of instantiate_polymorphic_binding
for specific Archive types. When the compiler looks for overloads of
instantiate_polymorphic_binding, it will be forced to instantiate this
struct during overload resolution, even though it will not be part of a valid
overload */
template <class Archive, class T>
struct polymorphic_serialization_support
{
#if defined(_MSC_VER) && !defined(__INTEL_COMPILER)
//! Creates the appropriate bindings depending on whether the archive supports
//! saving or loading
virtual CEREAL_DLL_EXPORT void instantiate() CEREAL_USED;
#else // NOT _MSC_VER
//! Creates the appropriate bindings depending on whether the archive supports
//! saving or loading
static CEREAL_DLL_EXPORT void instantiate() CEREAL_USED;
//! This typedef causes the compiler to instantiate this static function
typedef instantiate_function<instantiate> unused;
#endif // _MSC_VER
};
// instantiate implementation
template <class Archive, class T>
CEREAL_DLL_EXPORT void polymorphic_serialization_support<Archive,T>::instantiate()
{
create_bindings<Archive,T>::save( std::integral_constant<bool,
std::is_base_of<detail::OutputArchiveBase, Archive>::value &&
traits::is_output_serializable<T, Archive>::value>{} );
create_bindings<Archive,T>::load( std::integral_constant<bool,
std::is_base_of<detail::InputArchiveBase, Archive>::value &&
traits::is_input_serializable<T, Archive>::value>{} );
}
//! Begins the binding process of a type to all registered archives
/*! Archives need to be registered prior to this struct being instantiated via
the CEREAL_REGISTER_ARCHIVE macro. Overload resolution will then force
several static objects to be made that allow us to bind together all
registered archive types with the parameter type T. */
template <class T, class Tag = polymorphic_binding_tag>
struct bind_to_archives
{
//! Binding for non abstract types
void bind(std::false_type) const
{
instantiate_polymorphic_binding((T*) 0, 0, Tag{}, adl_tag{});
}
//! Binding for abstract types
void bind(std::true_type) const
{ }
//! Binds the type T to all registered archives
/*! If T is abstract, we will not serialize it and thus
do not need to make a binding */
bind_to_archives const & bind() const
{
static_assert( std::is_polymorphic<T>::value,
"Attempting to register non polymorphic type" );
bind( std::is_abstract<T>() );
return *this;
}
};
//! Used to hide the static object used to bind T to registered archives
template <class T, class Tag = polymorphic_binding_tag>
struct init_binding;
//! Base case overload for instantiation
/*! This will end up always being the best overload due to the second
parameter always being passed as an int. All other overloads will
accept pointers to archive types and have lower precedence than int.
Since the compiler needs to check all possible overloads, the
other overloads created via CEREAL_REGISTER_ARCHIVE, which will have
lower precedence due to requring a conversion from int to (Archive*),
will cause their return types to be instantiated through the static object
mechanisms even though they are never called.
See the documentation for the other functions to try and understand this */
template <class T, typename BindingTag>
void instantiate_polymorphic_binding( T*, int, BindingTag, adl_tag ) {}
} // namespace detail
} // namespace cereal
#endif // CEREAL_DETAILS_POLYMORPHIC_IMPL_HPP_
/*! \file static_object.hpp
\brief Internal polymorphism static object support
\ingroup Internal */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_DETAILS_STATIC_OBJECT_HPP_
#define CEREAL_DETAILS_STATIC_OBJECT_HPP_
//! Prevent link optimization from removing non-referenced static objects
/*! Especially for polymorphic support, we create static objects which
may not ever be explicitly referenced. Most linkers will detect this
and remove the code causing various unpleasant runtime errors. These
macros, adopted from Boost (see force_include.hpp) prevent this
(C) Copyright 2002 Robert Ramey - http://www.rrsd.com .
Use, modification and distribution is subject to the Boost Software
License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
http://www.boost.org/LICENSE_1_0.txt) */
#ifdef _MSC_VER
# define CEREAL_DLL_EXPORT __declspec(dllexport)
# define CEREAL_USED
#else // clang or gcc
# define CEREAL_DLL_EXPORT
# define CEREAL_USED __attribute__ ((__used__))
#endif
namespace cereal
{
namespace detail
{
//! A static, pre-execution object
/*! This class will create a single copy (singleton) of some
type and ensures that merely referencing this type will
cause it to be instantiated and initialized pre-execution.
For example, this is used heavily in the polymorphic pointer
serialization mechanisms to bind various archive types with
different polymorphic classes */
template <class T>
class CEREAL_DLL_EXPORT StaticObject
{
private:
//! Forces instantiation at pre-execution time
static void instantiate( T const & ) {}
static T & create()
{
static T t;
instantiate(instance);
return t;
}
StaticObject( StaticObject const & /*other*/ ) {}
public:
static T & getInstance()
{
return create();
}
private:
static T & instance;
};
template <class T> T & StaticObject<T>::instance = StaticObject<T>::create();
} // namespace detail
} // namespace cereal
#endif // CEREAL_DETAILS_STATIC_OBJECT_HPP_
\ No newline at end of file
/*! \file traits.hpp
\brief Internal type trait support
\ingroup Internal */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_DETAILS_TRAITS_HPP_
#define CEREAL_DETAILS_TRAITS_HPP_
#ifndef __clang__
#if (__GNUC__ == 4 && __GNUC_MINOR__ <= 7)
#define CEREAL_OLDER_GCC
#endif // gcc 4.7 or earlier
#endif // __clang__
#include <type_traits>
#include <typeindex>
#include <cereal/macros.hpp>
#include <cereal/access.hpp>
namespace cereal
{
namespace traits
{
using yes = std::true_type;
using no = std::false_type;
namespace detail
{
// ######################################################################
//! Used to delay a static_assert until template instantiation
template <class T>
struct delay_static_assert : std::false_type {};
// ######################################################################
// SFINAE Helpers
#ifdef CEREAL_OLDER_GCC // when VS supports better SFINAE, we can use this as the default
template<typename> struct Void { typedef void type; };
#endif // CEREAL_OLDER_GCC
//! Return type for SFINAE Enablers
enum class sfinae {};
// ######################################################################
// Helper functionality for boolean integral constants and Enable/DisableIf
template <bool H, bool ... T> struct meta_bool_and : std::integral_constant<bool, H && meta_bool_and<T...>::value> {};
template <bool B> struct meta_bool_and<B> : std::integral_constant<bool, B> {};
template <bool H, bool ... T> struct meta_bool_or : std::integral_constant<bool, H || meta_bool_or<T...>::value> {};
template <bool B> struct meta_bool_or<B> : std::integral_constant<bool, B> {};
// workaround needed due to bug in MSVC 2013, see
// http://connect.microsoft.com/VisualStudio/feedback/details/800231/c-11-alias-template-issue
template <bool ... Conditions>
struct EnableIfHelper : std::enable_if<meta_bool_and<Conditions...>::value, sfinae> {};
template <bool ... Conditions>
struct DisableIfHelper : std::enable_if<!meta_bool_or<Conditions...>::value, sfinae> {};
} // namespace detail
//! Used as the default value for EnableIf and DisableIf template parameters
/*! @relates EnableIf
@relates DisableIf */
static const detail::sfinae sfinae = {};
// ######################################################################
//! Provides a way to enable a function if conditions are met
/*! This is intended to be used in a near identical fashion to std::enable_if
while being significantly easier to read at the cost of not allowing for as
complicated of a condition.
This will compile (allow the function) if every condition evaluates to true.
at compile time. This should be used with SFINAE to ensure that at least
one other candidate function works when one fails due to an EnableIf.
This should be used as the las template parameter to a function as
an unnamed parameter with a default value of cereal::traits::sfinae:
@code{cpp}
// using by making the last template argument variadic
template <class T, EnableIf<std::is_same<T, bool>::value> = sfinae>
void func(T t );
@endcode
Note that this performs a logical AND of all conditions, so you will need
to construct more complicated requirements with this fact in mind.
@relates DisableIf
@relates sfinae
@tparam Conditions The conditions which will be logically ANDed to enable the function. */
template <bool ... Conditions>
using EnableIf = typename detail::EnableIfHelper<Conditions...>::type;
// ######################################################################
//! Provides a way to disable a function if conditions are met
/*! This is intended to be used in a near identical fashion to std::enable_if
while being significantly easier to read at the cost of not allowing for as
complicated of a condition.
This will compile (allow the function) if every condition evaluates to false.
This should be used with SFINAE to ensure that at least one other candidate
function works when one fails due to a DisableIf.
This should be used as the las template parameter to a function as
an unnamed parameter with a default value of cereal::traits::sfinae:
@code{cpp}
// using by making the last template argument variadic
template <class T, DisableIf<std::is_same<T, bool>::value> = sfinae>
void func(T t );
@endcode
This is often used in conjunction with EnableIf to form an enable/disable pair of
overloads.
Note that this performs a logical AND of all conditions, so you will need
to construct more complicated requirements with this fact in mind. If all conditions
hold, the function will be disabled.
@relates EnableIf
@relates sfinae
@tparam Conditions The conditions which will be logically ANDed to disable the function. */
template <bool ... Conditions>
using DisableIf = typename detail::DisableIfHelper<Conditions...>::type;
// ######################################################################
namespace detail
{
template <class InputArchive>
struct get_output_from_input : no
{
static_assert( detail::delay_static_assert<InputArchive>::value,
"Could not find an associated output archive for input archive." );
};
template <class OutputArchive>
struct get_input_from_output : no
{
static_assert( detail::delay_static_assert<OutputArchive>::value,
"Could not find an associated input archive for output archive." );
};
}
//! Sets up traits that relate an input archive to an output archive
#define CEREAL_SETUP_ARCHIVE_TRAITS(InputArchive, OutputArchive) \
namespace cereal { namespace traits { namespace detail { \
template <> struct get_output_from_input<InputArchive> \
{ using type = OutputArchive; }; \
template <> struct get_input_from_output<OutputArchive> \
{ using type = InputArchive; }; } } } /* end namespaces */
// ######################################################################
//! Used to convert a MAKE_HAS_XXX macro into a versioned variant
#define CEREAL_MAKE_VERSIONED_TEST ,0
// ######################################################################
//! Creates a test for whether a non const member function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
@param name The name of the function to test for (e.g. serialize, load, save)
@param test_name The name to give the test for the function being tested for (e.g. serialize, versioned_serialize)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#ifdef CEREAL_OLDER_GCC
#define CEREAL_MAKE_HAS_MEMBER_TEST(name, test_name, versioned) \
template <class T, class A, class SFINAE = void> \
struct has_member_##test_name : no {}; \
template <class T, class A> \
struct has_member_##test_name<T, A, \
typename detail::Void< decltype( cereal::access::member_##name( std::declval<A&>(), std::declval<T&>() versioned ) ) >::type> : yes {}
#else // NOT CEREAL_OLDER_GCC
#define CEREAL_MAKE_HAS_MEMBER_TEST(name, test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_member_##name##_##versioned##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( cereal::access::member_##name( std::declval<AA&>(), std::declval<TT&>() versioned ), yes()); \
template <class, class> \
static no test(...); \
static const bool value = std::is_same<decltype(test<T, A>(0)), yes>::value; \
}; \
} /* end namespace detail */ \
template <class T, class A> \
struct has_member_##test_name : std::integral_constant<bool, detail::has_member_##name##_##versioned##_impl<T, A>::value> {}
#endif // NOT CEREAL_OLDER_GCC
// ######################################################################
//! Creates a test for whether a non const non-member function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper non-member function for the given archive. */
#define CEREAL_MAKE_HAS_NON_MEMBER_TEST(test_name, func, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_non_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( func( std::declval<AA&>(), std::declval<TT&>() versioned ), yes()); \
template <class, class> \
static no test( ... ); \
static const bool value = std::is_same<decltype( test<T, A>( 0 ) ), yes>::value; \
}; \
} /* end namespace detail */ \
template <class T, class A> \
struct has_non_member_##test_name : std::integral_constant<bool, detail::has_non_member_##test_name##_impl<T, A>::value> {}
// ######################################################################
// Member Serialize
CEREAL_MAKE_HAS_MEMBER_TEST(serialize, serialize,);
// ######################################################################
// Member Serialize (versioned)
CEREAL_MAKE_HAS_MEMBER_TEST(serialize, versioned_serialize, CEREAL_MAKE_VERSIONED_TEST);
// ######################################################################
// Non Member Serialize
CEREAL_MAKE_HAS_NON_MEMBER_TEST(serialize, CEREAL_SERIALIZE_FUNCTION_NAME,);
// ######################################################################
// Non Member Serialize (versioned)
CEREAL_MAKE_HAS_NON_MEMBER_TEST(versioned_serialize, CEREAL_SERIALIZE_FUNCTION_NAME, CEREAL_MAKE_VERSIONED_TEST);
// ######################################################################
// Member Load
CEREAL_MAKE_HAS_MEMBER_TEST(load, load,);
// ######################################################################
// Member Load (versioned)
CEREAL_MAKE_HAS_MEMBER_TEST(load, versioned_load, CEREAL_MAKE_VERSIONED_TEST);
// ######################################################################
// Non Member Load
CEREAL_MAKE_HAS_NON_MEMBER_TEST(load, CEREAL_LOAD_FUNCTION_NAME,);
// ######################################################################
// Non Member Load (versioned)
CEREAL_MAKE_HAS_NON_MEMBER_TEST(versioned_load, CEREAL_LOAD_FUNCTION_NAME, CEREAL_MAKE_VERSIONED_TEST);
// ######################################################################
#undef CEREAL_MAKE_HAS_NON_MEMBER_TEST
#undef CEREAL_MAKE_HAS_MEMBER_TEST
// ######################################################################
//! Creates a test for whether a member save function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
@param test_name The name to give the test (e.g. save or versioned_save)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#ifdef CEREAL_OLDER_GCC
#define CEREAL_MAKE_HAS_MEMBER_SAVE_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_member_##test_name##_impl \
{ \
template <class TT, class AA, class SFINAE = void> struct test : no {}; \
template <class TT, class AA> \
struct test<TT, AA, \
typename detail::Void< decltype( cereal::access::member_save( std::declval<AA&>(), \
std::declval<TT const &>() versioned ) ) >::type> : yes {}; \
static const bool value = test<T, A>(); \
\
template <class TT, class AA, class SFINAE = void> struct test2 : no {}; \
template <class TT, class AA> \
struct test2<TT, AA, \
typename detail::Void< decltype( cereal::access::member_save_non_const( \
std::declval<AA&>(), \
std::declval<typename std::remove_const<TT>::type&>() versioned ) ) >::type> : yes {}; \
static const bool not_const_type = test2<T, A>(); \
}; \
} /* end namespace detail */
#else /* NOT CEREAL_OLDER_GCC =================================== */
#define CEREAL_MAKE_HAS_MEMBER_SAVE_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( cereal::access::member_save( std::declval<AA&>(), \
std::declval<TT const &>() versioned ), yes()); \
template <class, class> static no test(...); \
static const bool value = std::is_same<decltype(test<T, A>(0)), yes>::value; \
\
template <class TT, class AA> \
static auto test2(int) -> decltype( cereal::access::member_save_non_const( \
std::declval<AA &>(), \
std::declval<typename std::remove_const<TT>::type&>() versioned ), yes()); \
template <class, class> static no test2(...); \
static const bool not_const_type = std::is_same<decltype(test2<T, A>(0)), yes>::value; \
}; \
} /* end namespace detail */
#endif /* NOT CEREAL_OLDER_GCC */
// ######################################################################
// Member Save
CEREAL_MAKE_HAS_MEMBER_SAVE_IMPL(save, )
template <class T, class A>
struct has_member_save : std::integral_constant<bool, detail::has_member_save_impl<T, A>::value>
{
typedef typename detail::has_member_save_impl<T, A> check;
static_assert( check::value || !check::not_const_type,
"cereal detected a non-const save. \n "
"save member functions must always be const" );
};
// ######################################################################
// Member Save (versioned)
CEREAL_MAKE_HAS_MEMBER_SAVE_IMPL(versioned_save, CEREAL_MAKE_VERSIONED_TEST)
template <class T, class A>
struct has_member_versioned_save : std::integral_constant<bool, detail::has_member_versioned_save_impl<T, A>::value>
{
typedef typename detail::has_member_versioned_save_impl<T, A> check;
static_assert( check::value || !check::not_const_type,
"cereal detected a versioned non-const save. \n "
"save member functions must always be const" );
};
// ######################################################################
#undef CEREAL_MAKE_HAS_MEMBER_SAVE_IMPL
// ######################################################################
//! Creates a test for whether a non-member save function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper non-member function for the given archive.
@param test_name The name to give the test (e.g. save or versioned_save)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#define CEREAL_MAKE_HAS_NON_MEMBER_SAVE_TEST(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_non_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( CEREAL_SAVE_FUNCTION_NAME( \
std::declval<AA&>(), \
std::declval<TT const &>() versioned ), yes()); \
template <class, class> static no test(...); \
static const bool value = std::is_same<decltype(test<T, A>(0)), yes>::value; \
\
template <class TT, class AA> \
static auto test2(int) -> decltype( CEREAL_SAVE_FUNCTION_NAME( \
std::declval<AA &>(), \
std::declval<typename std::remove_const<TT>::type&>() versioned ), yes()); \
template <class, class> static no test2(...); \
static const bool not_const_type = std::is_same<decltype(test2<T, A>(0)), yes>::value; \
}; \
} /* end namespace detail */ \
\
template <class T, class A> \
struct has_non_member_##test_name : std::integral_constant<bool, detail::has_non_member_##test_name##_impl<T, A>::value> \
{ \
using check = typename detail::has_non_member_##test_name##_impl<T, A>; \
static_assert( check::value || !check::not_const_type, \
"cereal detected a non-const type parameter in non-member " #test_name ". \n " \
#test_name " non-member functions must always pass their types as const" ); \
};
// ######################################################################
// Non Member Save
CEREAL_MAKE_HAS_NON_MEMBER_SAVE_TEST(save, )
// ######################################################################
// Non Member Save (versioned)
CEREAL_MAKE_HAS_NON_MEMBER_SAVE_TEST(versioned_save, CEREAL_MAKE_VERSIONED_TEST)
// ######################################################################
#undef CEREAL_MAKE_HAS_NON_MEMBER_SAVE_TEST
// ######################################################################
// Minimal Utilities
namespace detail
{
// Determines if the provided type is an std::string
template <class> struct is_string : std::false_type {};
template <class CharT, class Traits, class Alloc>
struct is_string<std::basic_string<CharT, Traits, Alloc>> : std::true_type {};
}
// Determines if the type is valid for use with a minimal serialize function
template <class T>
struct is_minimal_type : std::integral_constant<bool,
detail::is_string<T>::value || std::is_arithmetic<T>::value> {};
// ######################################################################
//! Creates implementation details for whether a member save_minimal function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
@param test_name The name to give the test (e.g. save_minimal or versioned_save_minimal)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#ifdef CEREAL_OLDER_GCC
#define CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_member_##test_name##_impl \
{ \
template <class TT, class AA, class SFINAE = void> struct test : no {}; \
template <class TT, class AA> \
struct test<TT, AA, typename detail::Void< decltype( \
cereal::access::member_save_minimal( std::declval<AA const &>(), \
std::declval<TT const &>() versioned ) ) >::type> : yes {}; \
\
static const bool value = test<T, A>(); \
\
template <class TT, class AA, class SFINAE = void> struct test2 : no {}; \
template <class TT, class AA> \
struct test2<TT, AA, typename detail::Void< decltype( \
cereal::access::member_save_minimal_non_const( std::declval<AA const &>(), \
std::declval<typename std::remove_const<TT>::type&>() versioned ) ) >::type> : yes {}; \
static const bool not_const_type = test2<T, A>(); \
\
static const bool valid = value || !not_const_type; \
}; \
} /* end namespace detail */
#else /* NOT CEREAL_OLDER_GCC =================================== */
#define CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( cereal::access::member_save_minimal( \
std::declval<AA const &>(), \
std::declval<TT const &>() versioned ), yes()); \
template <class, class> static no test(...); \
static const bool value = std::is_same<decltype(test<T, A>(0)), yes>::value; \
\
template <class TT, class AA> \
static auto test2(int) -> decltype( cereal::access::member_save_minimal_non_const( \
std::declval<AA const &>(), \
std::declval<typename std::remove_const<TT>::type&>() versioned ), yes()); \
template <class, class> static no test2(...); \
static const bool not_const_type = std::is_same<decltype(test2<T, A>(0)), yes>::value; \
\
static const bool valid = value || !not_const_type; \
}; \
} /* end namespace detail */
#endif // NOT CEREAL_OLDER_GCC
// ######################################################################
//! Creates helpers for minimal save functions
/*! The get_member_*_type structs allow access to the return type of a save_minimal,
assuming that the function actually exists. If the function does not
exist, the type will be void.
@param test_name The name to give the test (e.g. save_minimal or versioned_save_minimal)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#define CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_HELPERS_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A, bool Valid> \
struct get_member_##test_name##_type { using type = void; }; \
\
template <class T, class A> \
struct get_member_##test_name##_type<T, A, true> \
{ \
using type = decltype( cereal::access::member_save_minimal( std::declval<A const &>(), \
std::declval<T const &>() versioned ) ); \
}; \
} /* end namespace detail */
// ######################################################################
//! Creates a test for whether a member save_minimal function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
@param test_name The name to give the test (e.g. save_minimal or versioned_save_minimal) */
#define CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_TEST(test_name) \
template <class T, class A> \
struct has_member_##test_name : std::integral_constant<bool, detail::has_member_##test_name##_impl<T, A>::value> \
{ \
using check = typename detail::has_member_##test_name##_impl<T, A>; \
static_assert( check::valid, \
"cereal detected a non-const member " #test_name ". \n " \
#test_name " member functions must always be const" ); \
\
using type = typename detail::get_member_##test_name##_type<T, A, check::value>::type; \
static_assert( (check::value && is_minimal_type<type>::value) || !check::value, \
"cereal detected a member " #test_name " with an invalid return type. \n " \
"return type must be arithmetic or string" ); \
};
// ######################################################################
// Member Save Minimal
CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_IMPL(save_minimal, )
CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_HELPERS_IMPL(save_minimal, )
CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_TEST(save_minimal)
// ######################################################################
// Member Save Minimal (versioned)
CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_IMPL(versioned_save_minimal, CEREAL_MAKE_VERSIONED_TEST)
CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_HELPERS_IMPL(versioned_save_minimal, CEREAL_MAKE_VERSIONED_TEST)
CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_TEST(versioned_save_minimal)
// ######################################################################
#undef CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_IMPL
#undef CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_HELPERS_IMPL
#undef CEREAL_MAKE_HAS_MEMBER_SAVE_MINIMAL_TEST
// ######################################################################
//! Creates a test for whether a non-member save_minimal function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
@param test_name The name to give the test (e.g. save_minimal or versioned_save_minimal)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#define CEREAL_MAKE_HAS_NON_MEMBER_SAVE_MINIMAL_TEST(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_non_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( CEREAL_SAVE_MINIMAL_FUNCTION_NAME( \
std::declval<AA const &>(), \
std::declval<TT const &>() versioned ), yes()); \
template <class, class> static no test(...); \
static const bool value = std::is_same<decltype(test<T, A>(0)), yes>::value; \
\
template <class TT, class AA> \
static auto test2(int) -> decltype( CEREAL_SAVE_MINIMAL_FUNCTION_NAME( \
std::declval<AA const &>(), \
std::declval<typename std::remove_const<TT>::type&>() versioned ), yes()); \
template <class, class> static no test2(...); \
static const bool not_const_type = std::is_same<decltype(test2<T, A>(0)), yes>::value; \
\
static const bool valid = value || !not_const_type; \
}; \
\
template <class T, class A, bool Valid> \
struct get_non_member_##test_name##_type { using type = void; }; \
\
template <class T, class A> \
struct get_non_member_##test_name##_type <T, A, true> \
{ \
using type = decltype( CEREAL_SAVE_MINIMAL_FUNCTION_NAME( std::declval<A const &>(), \
std::declval<T const &>() versioned ) ); \
}; \
} /* end namespace detail */ \
\
template <class T, class A> \
struct has_non_member_##test_name : std::integral_constant<bool, detail::has_non_member_##test_name##_impl<T, A>::value> \
{ \
using check = typename detail::has_non_member_##test_name##_impl<T, A>; \
static_assert( check::valid, \
"cereal detected a non-const type parameter in non-member " #test_name ". \n " \
#test_name " non-member functions must always pass their types as const" ); \
\
using type = typename detail::get_non_member_##test_name##_type<T, A, check::value>::type; \
static_assert( (check::value && is_minimal_type<type>::value) || !check::value, \
"cereal detected a non-member " #test_name " with an invalid return type. \n " \
"return type must be arithmetic or string" ); \
};
// ######################################################################
// Non-Member Save Minimal
CEREAL_MAKE_HAS_NON_MEMBER_SAVE_MINIMAL_TEST(save_minimal, )
// ######################################################################
// Non-Member Save Minimal (versioned)
CEREAL_MAKE_HAS_NON_MEMBER_SAVE_MINIMAL_TEST(versioned_save_minimal, CEREAL_MAKE_VERSIONED_TEST)
// ######################################################################
#undef CEREAL_MAKE_HAS_NON_MEMBER_SAVE_MINIMAL_TEST
// ######################################################################
// Load Minimal Utilities
namespace detail
{
//! Used to help strip away conversion wrappers
/*! If someone writes a non-member load/save minimal function that accepts its
parameter as some generic template type and needs to perform trait checks
on that type, our NoConvert wrappers will interfere with this. Using
the struct strip_minmal, users can strip away our wrappers to get to
the underlying type, allowing traits to work properly */
struct NoConvertBase {};
//! A struct that prevents implicit conversion
/*! Any type instantiated with this struct will be unable to implicitly convert
to another type. Is designed to only allow conversion to Source const &.
@tparam Source the type of the original source */
template <class Source>
struct NoConvertConstRef : NoConvertBase
{
using type = Source; //!< Used to get underlying type easily
template <class Dest, class = typename std::enable_if<std::is_same<Source, Dest>::value>::type>
operator Dest () = delete;
//! only allow conversion if the types are the same and we are converting into a const reference
template <class Dest, class = typename std::enable_if<std::is_same<Source, Dest>::value>::type>
operator Dest const & ();
};
//! A struct that prevents implicit conversion
/*! Any type instantiated with this struct will be unable to implicitly convert
to another type. Is designed to only allow conversion to Source &.
@tparam Source the type of the original source */
template <class Source>
struct NoConvertRef : NoConvertBase
{
using type = Source; //!< Used to get underlying type easily
template <class Dest, class = typename std::enable_if<std::is_same<Source, Dest>::value>::type>
operator Dest () = delete;
#ifdef __clang__
template <class Dest, class = typename std::enable_if<std::is_same<Source, Dest>::value>::type>
operator Dest const & () = delete;
#endif // __clang__
//! only allow conversion if the types are the same and we are converting into a const reference
template <class Dest, class = typename std::enable_if<std::is_same<Source, Dest>::value>::type>
operator Dest & ();
};
//! A type that can implicitly convert to anything else
struct AnyConvert
{
template <class Dest>
operator Dest & ();
template <class Dest>
operator Dest const & () const;
};
} // namespace detail
// ######################################################################
//! Creates a test for whether a member load_minimal function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
Our strategy here is to first check if a function matching the signature more or less exists
(allow anything like load_minimal(xxx) using AnyConvert, and then secondly enforce
that it has the correct signature using NoConvertConstRef
@param test_name The name to give the test (e.g. load_minimal or versioned_load_minimal)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#ifdef CEREAL_OLDER_GCC
#define CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A, class SFINAE = void> struct has_member_##test_name##_impl : no {}; \
template <class T, class A> \
struct has_member_##test_name##_impl<T, A, typename detail::Void< decltype( \
cereal::access::member_load_minimal( std::declval<A const &>(), \
std::declval<T &>(), AnyConvert() versioned ) ) >::type> : yes {}; \
\
template <class T, class A, class U, class SFINAE = void> struct has_member_##test_name##_type_impl : no {}; \
template <class T, class A, class U> \
struct has_member_##test_name##_type_impl<T, A, U, typename detail::Void< decltype( \
cereal::access::member_load_minimal( std::declval<A const &>(), \
std::declval<T &>(), NoConvertConstRef<U>() versioned ) ) >::type> : yes {}; \
} /* end namespace detail */
#else /* NOT CEREAL_OLDER_GCC =================================== */
#define CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_IMPL(test_name, versioned) \
namespace detail \
{ \
template <class T, class A> \
struct has_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( cereal::access::member_load_minimal( \
std::declval<AA const &>(), \
std::declval<TT &>(), AnyConvert() versioned ), yes()); \
template <class, class> static no test(...); \
static const bool value = std::is_same<decltype(test<T, A>(0)), yes>::value; \
}; \
template <class T, class A, class U> \
struct has_member_##test_name##_type_impl \
{ \
template <class TT, class AA, class UU> \
static auto test(int) -> decltype( cereal::access::member_load_minimal( \
std::declval<AA const &>(), \
std::declval<TT &>(), NoConvertConstRef<UU>() versioned ), yes()); \
template <class, class, class> static no test(...); \
static const bool value = std::is_same<decltype(test<T, A, U>(0)), yes>::value; \
\
}; \
} /* end namespace detail */
#endif // NOT CEREAL_OLDER_GCC
// ######################################################################
//! Creates helpers for minimal load functions
/*! The has_member_*_wrapper structs ensure that the load and save types for the
requested function type match appropriately.
@param load_test_name The name to give the test (e.g. load_minimal or versioned_load_minimal)
@param save_test_name The name to give the test (e.g. save_minimal or versioned_save_minimal,
should match the load name.
@param save_test_prefix The name to give the test (e.g. save_minimal or versioned_save_minimal,
should match the load name, without the trailing "_minimal" (e.g.
save or versioned_save). Needed because the preprocessor is an abomination.
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#define CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_HELPERS_IMPL(load_test_name, save_test_name, save_test_prefix, versioned) \
namespace detail \
{ \
template <class T, class A, bool Valid> \
struct has_member_##load_test_name##_wrapper : std::false_type {}; \
\
template <class T, class A> \
struct has_member_##load_test_name##_wrapper<T, A, true> \
{ \
using AOut = typename detail::get_output_from_input<A>::type; \
\
static_assert( has_member_##save_test_prefix##_minimal<T, AOut>::value, \
"cereal detected member " #load_test_name " but no valid member " #save_test_name ". \n " \
"cannot evaluate correctness of " #load_test_name " without valid " #save_test_name "." ); \
\
using SaveType = typename detail::get_member_##save_test_prefix##_minimal_type<T, AOut, true>::type; \
const static bool value = has_member_##load_test_name##_impl<T, A>::value; \
const static bool valid = has_member_##load_test_name##_type_impl<T, A, SaveType>::value; \
\
static_assert( valid || !value, "cereal detected different or invalid types in corresponding member " \
#load_test_name " and " #save_test_name " functions. \n " \
"the paramater to " #load_test_name " must be a constant reference to the type that " \
#save_test_name " returns." ); \
}; \
} /* end namespace detail */
// ######################################################################
//! Creates a test for whether a member load_minimal function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
@param load_test_name The name to give the test (e.g. load_minimal or versioned_load_minimal)
@param load_test_prefix The above parameter minus the trailing "_minimal" */
#define CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_TEST(load_test_name, load_test_prefix) \
template <class T, class A> \
struct has_member_##load_test_prefix##_minimal : std::integral_constant<bool, \
detail::has_member_##load_test_name##_wrapper<T, A, detail::has_member_##load_test_name##_impl<T, A>::value>::value> {};
// ######################################################################
// Member Load Minimal
CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_IMPL(load_minimal, )
CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_HELPERS_IMPL(load_minimal, save_minimal, save, )
CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_TEST(load_minimal, load)
// ######################################################################
// Member Load Minimal (versioned)
CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_IMPL(versioned_load_minimal, CEREAL_MAKE_VERSIONED_TEST)
CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_HELPERS_IMPL(versioned_load_minimal, versioned_save_minimal, versioned_save, CEREAL_MAKE_VERSIONED_TEST)
CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_TEST(versioned_load_minimal, versioned_load)
// ######################################################################
#undef CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_IMPL
#undef CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_HELPERS_IMPL
#undef CEREAL_MAKE_HAS_MEMBER_LOAD_MINIMAL_TEST
// ######################################################################
// Non-Member Load Minimal
namespace detail
{
#ifdef CEREAL_OLDER_GCC
void CEREAL_LOAD_MINIMAL_FUNCTION_NAME(); // prevents nonsense complaining about not finding this
void CEREAL_SAVE_MINIMAL_FUNCTION_NAME();
#endif // CEREAL_OLDER_GCC
} // namespace detail
// ######################################################################
//! Creates a test for whether a non-member load_minimal function exists
/*! This creates a class derived from std::integral_constant that will be true if
the type has the proper member function for the given archive.
See notes from member load_minimal implementation.
@param test_name The name to give the test (e.g. load_minimal or versioned_load_minimal)
@param save_name The corresponding name the save test would have (e.g. save_minimal or versioned_save_minimal)
@param versioned Either blank or the macro CEREAL_MAKE_VERSIONED_TEST */
#define CEREAL_MAKE_HAS_NON_MEMBER_LOAD_MINIMAL_TEST(test_name, save_name, versioned) \
namespace detail \
{ \
template <class T, class A, class U = void> \
struct has_non_member_##test_name##_impl \
{ \
template <class TT, class AA> \
static auto test(int) -> decltype( CEREAL_LOAD_MINIMAL_FUNCTION_NAME( \
std::declval<AA const &>(), std::declval<TT&>(), AnyConvert() versioned ), yes() ); \
template <class, class> static no test( ... ); \
static const bool exists = std::is_same<decltype( test<T, A>( 0 ) ), yes>::value; \
\
template <class TT, class AA, class UU> \
static auto test2(int) -> decltype( CEREAL_LOAD_MINIMAL_FUNCTION_NAME( \
std::declval<AA const &>(), std::declval<TT&>(), NoConvertConstRef<UU>() versioned ), yes() ); \
template <class, class, class> static no test2( ... ); \
static const bool valid = std::is_same<decltype( test2<T, A, U>( 0 ) ), yes>::value; \
\
template <class TT, class AA> \
static auto test3(int) -> decltype( CEREAL_LOAD_MINIMAL_FUNCTION_NAME( \
std::declval<AA const &>(), NoConvertRef<TT>(), AnyConvert() versioned ), yes() ); \
template <class, class> static no test3( ... ); \
static const bool const_valid = std::is_same<decltype( test3<T, A>( 0 ) ), yes>::value; \
}; \
\
template <class T, class A, bool Valid> \
struct has_non_member_##test_name##_wrapper : std::false_type {}; \
\
template <class T, class A> \
struct has_non_member_##test_name##_wrapper<T, A, true> \
{ \
using AOut = typename detail::get_output_from_input<A>::type; \
\
static_assert( detail::has_non_member_##save_name##_impl<T, AOut>::valid, \
"cereal detected non-member " #test_name " but no valid non-member " #save_name ". \n " \
"cannot evaluate correctness of " #test_name " without valid " #save_name "." ); \
\
using SaveType = typename detail::get_non_member_##save_name##_type<T, AOut, true>::type; \
using check = has_non_member_##test_name##_impl<T, A, SaveType>; \
static const bool value = check::exists; \
\
static_assert( check::valid || !check::exists, "cereal detected different types in corresponding non-member " \
#test_name " and " #save_name " functions. \n " \
"the paramater to " #test_name " must be a constant reference to the type that " #save_name " returns." ); \
static_assert( check::const_valid || !check::exists, \
"cereal detected an invalid serialization type parameter in non-member " #test_name ". " \
#test_name " non-member functions must accept their serialization type by non-const reference" ); \
}; \
} /* namespace detail */ \
\
template <class T, class A> \
struct has_non_member_##test_name : std::integral_constant<bool, \
detail::has_non_member_##test_name##_wrapper<T, A, detail::has_non_member_##test_name##_impl<T, A>::exists>::value> {};
// ######################################################################
// Non-Member Load Minimal
CEREAL_MAKE_HAS_NON_MEMBER_LOAD_MINIMAL_TEST(load_minimal, save_minimal, )
// ######################################################################
// Non-Member Load Minimal (versioned)
CEREAL_MAKE_HAS_NON_MEMBER_LOAD_MINIMAL_TEST(versioned_load_minimal, versioned_save_minimal, CEREAL_MAKE_VERSIONED_TEST)
// ######################################################################
#undef CEREAL_MAKE_HAS_NON_MEMBER_LOAD_MINIMAL_TEST
// ######################################################################
// End of serialization existence tests
#undef CEREAL_MAKE_VERSIONED_TEST
// ######################################################################
template <class T, class InputArchive, class OutputArchive>
struct has_member_split : std::integral_constant<bool,
(has_member_load<T, InputArchive>::value && has_member_save<T, OutputArchive>::value) ||
(has_member_versioned_load<T, InputArchive>::value && has_member_versioned_save<T, OutputArchive>::value)> {};
// ######################################################################
template <class T, class InputArchive, class OutputArchive>
struct has_non_member_split : std::integral_constant<bool,
(has_non_member_load<T, InputArchive>::value && has_non_member_save<T, OutputArchive>::value) ||
(has_non_member_versioned_load<T, InputArchive>::value && has_non_member_versioned_save<T, OutputArchive>::value)> {};
// ######################################################################
template <class T, class OutputArchive>
struct has_invalid_output_versioning : std::integral_constant<bool,
(has_member_versioned_save<T, OutputArchive>::value && has_member_save<T, OutputArchive>::value) ||
(has_non_member_versioned_save<T, OutputArchive>::value && has_non_member_save<T, OutputArchive>::value) ||
(has_member_versioned_serialize<T, OutputArchive>::value && has_member_serialize<T, OutputArchive>::value) ||
(has_non_member_versioned_serialize<T, OutputArchive>::value && has_non_member_serialize<T, OutputArchive>::value) ||
(has_member_versioned_save_minimal<T, OutputArchive>::value && has_member_save_minimal<T, OutputArchive>::value) ||
(has_non_member_versioned_save_minimal<T, OutputArchive>::value && has_non_member_save_minimal<T, OutputArchive>::value)> {};
// ######################################################################
template <class T, class InputArchive>
struct has_invalid_input_versioning : std::integral_constant<bool,
(has_member_versioned_load<T, InputArchive>::value && has_member_load<T, InputArchive>::value) ||
(has_non_member_versioned_load<T, InputArchive>::value && has_non_member_load<T, InputArchive>::value) ||
(has_member_versioned_serialize<T, InputArchive>::value && has_member_serialize<T, InputArchive>::value) ||
(has_non_member_versioned_serialize<T, InputArchive>::value && has_non_member_serialize<T, InputArchive>::value) ||
(has_member_versioned_load_minimal<T, InputArchive>::value && has_member_load_minimal<T, InputArchive>::value) ||
(has_non_member_versioned_load_minimal<T, InputArchive>::value && has_non_member_load_minimal<T, InputArchive>::value)> {};
// ######################################################################
namespace detail
{
//! Create a test for a cereal::specialization entry
#define CEREAL_MAKE_IS_SPECIALIZED_IMPL(name) \
template <class T, class A> \
struct is_specialized_##name : std::integral_constant<bool, \
!std::is_base_of<std::false_type, specialize<A, T, specialization::name>>::value> {}
CEREAL_MAKE_IS_SPECIALIZED_IMPL(member_serialize);
CEREAL_MAKE_IS_SPECIALIZED_IMPL(member_load_save);
CEREAL_MAKE_IS_SPECIALIZED_IMPL(member_load_save_minimal);
CEREAL_MAKE_IS_SPECIALIZED_IMPL(non_member_serialize);
CEREAL_MAKE_IS_SPECIALIZED_IMPL(non_member_load_save);
CEREAL_MAKE_IS_SPECIALIZED_IMPL(non_member_load_save_minimal);
#undef CEREAL_MAKE_IS_SPECIALIZED_IMPL
//! Number of specializations detected
template <class T, class A>
struct count_specializations : std::integral_constant<int,
is_specialized_member_serialize<T, A>::value +
is_specialized_member_load_save<T, A>::value +
is_specialized_member_load_save_minimal<T, A>::value +
is_specialized_non_member_serialize<T, A>::value +
is_specialized_non_member_load_save<T, A>::value +
is_specialized_non_member_load_save_minimal<T, A>::value> {};
} // namespace detail
//! Check if any specialization exists for a type
template <class T, class A>
struct is_specialized : std::integral_constant<bool,
detail::is_specialized_member_serialize<T, A>::value ||
detail::is_specialized_member_load_save<T, A>::value ||
detail::is_specialized_member_load_save_minimal<T, A>::value ||
detail::is_specialized_non_member_serialize<T, A>::value ||
detail::is_specialized_non_member_load_save<T, A>::value ||
detail::is_specialized_non_member_load_save_minimal<T, A>::value>
{
static_assert(detail::count_specializations<T, A>::value <= 1, "More than one explicit specialization detected for type.");
};
//! Create the static assertion for some specialization
/*! This assertion will fail if the type is indeed specialized and does not have the appropriate
type of serialization functions */
#define CEREAL_MAKE_IS_SPECIALIZED_ASSERT(name, versioned_name, print_name, spec_name) \
static_assert( (is_specialized<T, A>::value && detail::is_specialized_##spec_name<T, A>::value && \
(has_##name<T, A>::value || has_##versioned_name<T, A>::value)) \
|| !(is_specialized<T, A>::value && detail::is_specialized_##spec_name<T, A>::value), \
"cereal detected " #print_name " specialization but no " #print_name " serialize function" )
//! Generates a test for specialization for versioned and unversioned functions
/*! This creates checks that can be queried to see if a given type of serialization function
has been specialized for this type */
#define CEREAL_MAKE_IS_SPECIALIZED(name, versioned_name, spec_name) \
template <class T, class A> \
struct is_specialized_##name : std::integral_constant<bool, \
is_specialized<T, A>::value && detail::is_specialized_##spec_name<T, A>::value> \
{ CEREAL_MAKE_IS_SPECIALIZED_ASSERT(name, versioned_name, name, spec_name); }; \
template <class T, class A> \
struct is_specialized_##versioned_name : std::integral_constant<bool, \
is_specialized<T, A>::value && detail::is_specialized_##spec_name<T, A>::value> \
{ CEREAL_MAKE_IS_SPECIALIZED_ASSERT(name, versioned_name, versioned_name, spec_name); }
CEREAL_MAKE_IS_SPECIALIZED(member_serialize, member_versioned_serialize, member_serialize);
CEREAL_MAKE_IS_SPECIALIZED(non_member_serialize, non_member_versioned_serialize, non_member_serialize);
CEREAL_MAKE_IS_SPECIALIZED(member_save, member_versioned_save, member_load_save);
CEREAL_MAKE_IS_SPECIALIZED(non_member_save, non_member_versioned_save, non_member_load_save);
CEREAL_MAKE_IS_SPECIALIZED(member_load, member_versioned_load, member_load_save);
CEREAL_MAKE_IS_SPECIALIZED(non_member_load, non_member_versioned_load, non_member_load_save);
CEREAL_MAKE_IS_SPECIALIZED(member_save_minimal, member_versioned_save_minimal, member_load_save_minimal);
CEREAL_MAKE_IS_SPECIALIZED(non_member_save_minimal, non_member_versioned_save_minimal, non_member_load_save_minimal);
CEREAL_MAKE_IS_SPECIALIZED(member_load_minimal, member_versioned_load_minimal, member_load_save_minimal);
CEREAL_MAKE_IS_SPECIALIZED(non_member_load_minimal, non_member_versioned_load_minimal, non_member_load_save_minimal);
#undef CEREAL_MAKE_IS_SPECIALIZED_ASSERT
#undef CEREAL_MAKE_IS_SPECIALIZED
// ######################################################################
// detects if a type has any active minimal output serialization
template <class T, class OutputArchive>
struct has_minimal_output_serialization : std::integral_constant<bool,
is_specialized_member_save_minimal<T, OutputArchive>::value ||
((has_member_save_minimal<T, OutputArchive>::value ||
has_non_member_save_minimal<T, OutputArchive>::value ||
has_member_versioned_save_minimal<T, OutputArchive>::value ||
has_non_member_versioned_save_minimal<T, OutputArchive>::value) &&
!(is_specialized_member_serialize<T, OutputArchive>::value ||
is_specialized_member_save<T, OutputArchive>::value))> {};
// ######################################################################
// detects if a type has any active minimal input serialization
template <class T, class InputArchive>
struct has_minimal_input_serialization : std::integral_constant<bool,
is_specialized_member_load_minimal<T, InputArchive>::value ||
((has_member_load_minimal<T, InputArchive>::value ||
has_non_member_load_minimal<T, InputArchive>::value ||
has_member_versioned_load_minimal<T, InputArchive>::value ||
has_non_member_versioned_load_minimal<T, InputArchive>::value) &&
!(is_specialized_member_serialize<T, InputArchive>::value ||
is_specialized_member_load<T, InputArchive>::value))> {};
// ######################################################################
namespace detail
{
//! The number of output serialization functions available
/*! If specialization is being used, we'll count only those; otherwise we'll count everything */
template <class T, class OutputArchive>
struct count_output_serializers : std::integral_constant<int,
count_specializations<T, OutputArchive>::value ? count_specializations<T, OutputArchive>::value :
has_member_save<T, OutputArchive>::value +
has_non_member_save<T, OutputArchive>::value +
has_member_serialize<T, OutputArchive>::value +
has_non_member_serialize<T, OutputArchive>::value +
has_member_save_minimal<T, OutputArchive>::value +
has_non_member_save_minimal<T, OutputArchive>::value +
/*-versioned---------------------------------------------------------*/
has_member_versioned_save<T, OutputArchive>::value +
has_non_member_versioned_save<T, OutputArchive>::value +
has_member_versioned_serialize<T, OutputArchive>::value +
has_non_member_versioned_serialize<T, OutputArchive>::value +
has_member_versioned_save_minimal<T, OutputArchive>::value +
has_non_member_versioned_save_minimal<T, OutputArchive>::value> {};
}
template <class T, class OutputArchive>
struct is_output_serializable : std::integral_constant<bool,
detail::count_output_serializers<T, OutputArchive>::value == 1> {};
// ######################################################################
namespace detail
{
//! The number of input serialization functions available
/*! If specialization is being used, we'll count only those; otherwise we'll count everything */
template <class T, class InputArchive>
struct count_input_serializers : std::integral_constant<int,
count_specializations<T, InputArchive>::value ? count_specializations<T, InputArchive>::value :
has_member_load<T, InputArchive>::value +
has_non_member_load<T, InputArchive>::value +
has_member_serialize<T, InputArchive>::value +
has_non_member_serialize<T, InputArchive>::value +
has_member_load_minimal<T, InputArchive>::value +
has_non_member_load_minimal<T, InputArchive>::value +
/*-versioned---------------------------------------------------------*/
has_member_versioned_load<T, InputArchive>::value +
has_non_member_versioned_load<T, InputArchive>::value +
has_member_versioned_serialize<T, InputArchive>::value +
has_non_member_versioned_serialize<T, InputArchive>::value +
has_member_versioned_load_minimal<T, InputArchive>::value +
has_non_member_versioned_load_minimal<T, InputArchive>::value> {};
}
template <class T, class InputArchive>
struct is_input_serializable : std::integral_constant<bool,
detail::count_input_serializers<T, InputArchive>::value == 1> {};
// ######################################################################
// Base Class Support
namespace detail
{
struct base_class_id
{
template<class T>
base_class_id(T const * const t) :
type(typeid(T)),
ptr(t),
hash(std::hash<std::type_index>()(typeid(T)) ^ (std::hash<void const *>()(t) << 1))
{ }
bool operator==(base_class_id const & other) const
{ return (type == other.type) && (ptr == other.ptr); }
std::type_index type;
void const * ptr;
size_t hash;
};
struct base_class_id_hash { size_t operator()(base_class_id const & id) const { return id.hash; } };
} // namespace detail
namespace detail
{
//! Common base type for base class casting
struct BaseCastBase {};
template <class>
struct get_base_class;
template <template<typename> class Cast, class Base>
struct get_base_class<Cast<Base>>
{
using type = Base;
};
//! Base class cast, behave as the test
template <class Cast, template<class, class> class Test, class Archive,
bool IsBaseCast = std::is_base_of<BaseCastBase, Cast>::value>
struct has_minimal_base_class_serialization_impl : Test<typename get_base_class<Cast>::type, Archive>
{ };
//! Not a base class cast
template <class Cast, template<class, class> class Test, class Archive>
struct has_minimal_base_class_serialization_impl<Cast,Test, Archive, false> : std::false_type
{ };
}
//! Checks to see if the base class used in a cast has a minimal serialization
/*! @tparam Cast Either base_class or virtual_base_class wrapped type
@tparam Test A has_minimal test (for either input or output)
@tparam Archive The archive to use with the test */
template <class Cast, template<class, class> class Test, class Archive>
struct has_minimal_base_class_serialization : detail::has_minimal_base_class_serialization_impl<Cast, Test, Archive>
{ };
// ######################################################################
namespace detail
{
struct shared_from_this_wrapper
{
template <class U>
static auto check( U const & t ) -> decltype( ::cereal::access::shared_from_this(t), std::true_type() );
static auto check( ... ) -> decltype( std::false_type() );
template <class U>
static auto get( U const & t ) -> decltype( t.shared_from_this() );
};
}
//! Determine if T or any base class of T has inherited from std::enable_shared_from_this
template<class T>
struct has_shared_from_this : decltype(detail::shared_from_this_wrapper::check(std::declval<T>()))
{ };
//! Get the type of the base class of T which inherited from std::enable_shared_from_this
template <class T>
struct get_shared_from_this_base
{
private:
using PtrType = decltype(detail::shared_from_this_wrapper::get(std::declval<T>()));
public:
//! The type of the base of T that inherited from std::enable_shared_from_this
using type = typename std::decay<typename PtrType::element_type>::type;
};
// ######################################################################
//! Extracts the true type from something possibly wrapped in a cereal NoConvert
/*! Internally cereal uses some wrapper classes to test the validity of non-member
minimal load and save functions. This can interfere with user type traits on
templated load and save minimal functions. To get to the correct underlying type,
users should use strip_minimal when performing any enable_if type type trait checks.
See the enum serialization in types/common.hpp for an example of using this */
template <class T, bool IsCerealMinimalTrait = std::is_base_of<detail::NoConvertBase, T>::value>
struct strip_minimal
{
using type = T;
};
//! Specialization for types wrapped in a NoConvert
template <class T>
struct strip_minimal<T, true>
{
using type = typename T::type;
};
// ######################################################################
//! Member load and construct check
template<typename T, typename A>
struct has_member_load_and_construct : std::integral_constant<bool,
std::is_same<decltype( access::load_and_construct<T>( std::declval<A&>(), std::declval< ::cereal::construct<T>&>() ) ), void>::value>
{ };
// ######################################################################
//! Non member load and construct check
template<typename T, typename A>
struct has_non_member_load_and_construct : std::integral_constant<bool,
std::is_same<decltype( LoadAndConstruct<T>::load_and_construct( std::declval<A&>(), std::declval< ::cereal::construct<T>&>() ) ), void>::value>
{ };
// ######################################################################
//! Has either a member or non member allocate
template<typename T, typename A>
struct has_load_and_construct : std::integral_constant<bool,
has_member_load_and_construct<T, A>::value || has_non_member_load_and_construct<T, A>::value>
{ };
// ######################################################################
//! Determines whether the class T can be default constructed by cereal::access
template <class T>
struct is_default_constructible
{
#ifdef CEREAL_OLDER_GCC
template <class TT, class SFINAE = void>
struct test : no {};
template <class TT>
struct test<TT, typename detail::Void< decltype( cereal::access::construct<TT>() ) >::type> : yes {};
static const bool value = test<T>();
#else // NOT CEREAL_OLDER_GCC =========================================
template <class TT>
static auto test(int) -> decltype( cereal::access::construct<TT>(), yes());
template <class>
static no test(...);
static const bool value = std::is_same<decltype(test<T>(0)), yes>::value;
#endif // NOT CEREAL_OLDER_GCC
};
// ######################################################################
namespace detail
{
//! Removes all qualifiers and minimal wrappers from an archive
template <class A>
using decay_archive = typename std::decay<typename strip_minimal<A>::type>::type;
}
//! Checks if the provided archive type is equal to some cereal archive type
/*! This automatically does things such as std::decay and removing any other wrappers that may be
on the Archive template parameter.
Example use:
@code{cpp}
// example use to disable a serialization function
template <class Archive, EnableIf<cereal::traits::is_same_archive<Archive, cereal::BinaryOutputArchive>::value> = sfinae>
void save( Archive & ar, MyType const & mt );
@endcode */
template <class ArchiveT, class CerealArchiveT>
struct is_same_archive : std::integral_constant<bool,
std::is_same<detail::decay_archive<ArchiveT>, CerealArchiveT>::value>
{ };
// ######################################################################
//! A macro to use to restrict which types of archives your function will work for.
/*! This requires you to have a template class parameter named Archive and replaces the void return
type for your function.
INTYPE refers to the input archive type you wish to restrict on.
OUTTYPE refers to the output archive type you wish to restrict on.
For example, if we want to limit a serialize to only work with binary serialization:
@code{.cpp}
template <class Archive>
CEREAL_ARCHIVE_RESTRICT(BinaryInputArchive, BinaryOutputArchive)
serialize( Archive & ar, MyCoolType & m )
{
ar & m;
}
@endcode
If you need to do more restrictions in your enable_if, you will need to do this by hand.
*/
#define CEREAL_ARCHIVE_RESTRICT(INTYPE, OUTTYPE) \
typename std::enable_if<cereal::traits::is_same_archive<Archive, INTYPE>::value || cereal::traits::is_same_archive<Archive, OUTTYPE>::value, void>::type
//! Type traits only struct used to mark an archive as human readable (text based)
/*! Archives that wish to identify as text based/human readable should inherit from
this struct */
struct TextArchive {};
//! Checks if an archive is a text archive (human readable)
template <class A>
struct is_text_archive : std::integral_constant<bool,
std::is_base_of<TextArchive, detail::decay_archive<A>>::value>
{ };
} // namespace traits
// ######################################################################
namespace detail
{
template <class T, class A, bool Member = traits::has_member_load_and_construct<T, A>::value, bool NonMember = traits::has_non_member_load_and_construct<T, A>::value>
struct Construct
{
static_assert( cereal::traits::detail::delay_static_assert<T>::value,
"Cereal detected both member and non member load_and_construct functions!" );
static T * load_andor_construct( A & /*ar*/, construct<T> & /*construct*/ )
{ return nullptr; }
};
template <class T, class A>
struct Construct<T, A, false, false>
{
static_assert( ::cereal::traits::is_default_constructible<T>::value,
"Trying to serialize a an object with no default constructor. \n\n "
"Types must either be default constructible or define either a member or non member Construct function. \n "
"Construct functions generally have the signature: \n\n "
"template <class Archive> \n "
"static void load_and_construct(Archive & ar, cereal::construct<T> & construct) \n "
"{ \n "
" var a; \n "
" ar( a ) \n "
" construct( a ); \n "
"} \n\n" );
static T * load_andor_construct()
{ return ::cereal::access::construct<T>(); }
};
template <class T, class A>
struct Construct<T, A, true, false>
{
static void load_andor_construct( A & ar, construct<T> & construct )
{
access::load_and_construct<T>( ar, construct );
}
};
template <class T, class A>
struct Construct<T, A, false, true>
{
static void load_andor_construct( A & ar, construct<T> & construct )
{
LoadAndConstruct<T>::load_and_construct( ar, construct );
}
};
} // namespace detail
} // namespace cereal
#endif // CEREAL_DETAILS_TRAITS_HPP_
/*! \file util.hpp
\brief Internal misc utilities
\ingroup Internal */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_DETAILS_UTIL_HPP_
#define CEREAL_DETAILS_UTIL_HPP_
#include <typeinfo>
#include <string>
#ifdef _MSC_VER
namespace cereal
{
namespace util
{
//! Demangles the type encoded in a string
/*! @internal */
inline std::string demangle( std::string const & name )
{ return name; }
//! Gets the demangled name of a type
/*! @internal */
template <class T> inline
std::string demangledName()
{ return typeid( T ).name(); }
} // namespace util
} // namespace cereal
#else // clang or gcc
#include <cxxabi.h>
#include <cstdlib>
namespace cereal
{
namespace util
{
//! Demangles the type encoded in a string
/*! @internal */
inline std::string demangle(std::string mangledName)
{
int status = 0;
char *demangledName = nullptr;
std::size_t len;
demangledName = abi::__cxa_demangle(mangledName.c_str(), 0, &len, &status);
std::string retName(demangledName);
free(demangledName);
return retName;
}
//! Gets the demangled name of a type
/*! @internal */
template<class T> inline
std::string demangledName()
{ return demangle(typeid(T).name()); }
}
} // namespace cereal
#endif // clang or gcc branch of _MSC_VER
#endif // CEREAL_DETAILS_UTIL_HPP_
/*
Copyright (C) 2004-2008 René Nyffenegger
This source code is provided 'as-is', without any express or implied
warranty. In no event will the author be held liable for any damages
arising from the use of this software.
Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:
1. The origin of this source code must not be misrepresented; you must not
claim that you wrote the original source code. If you use this source code
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original source code.
3. This notice may not be removed or altered from any source distribution.
René Nyffenegger rene.nyffenegger@adp-gmbh.ch
*/
#ifndef CEREAL_EXTERNAL_BASE64_HPP_
#define CEREAL_EXTERNAL_BASE64_HPP_
#include <string>
namespace base64
{
static const std::string chars =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ"
"abcdefghijklmnopqrstuvwxyz"
"0123456789+/";
static inline bool is_base64(unsigned char c) {
return (isalnum(c) || (c == '+') || (c == '/'));
}
inline std::string encode(unsigned char const* bytes_to_encode, size_t in_len) {
std::string ret;
int i = 0;
int j = 0;
unsigned char char_array_3[3];
unsigned char char_array_4[4];
while (in_len--) {
char_array_3[i++] = *(bytes_to_encode++);
if (i == 3) {
char_array_4[0] = (unsigned char) ((char_array_3[0] & 0xfc) >> 2);
char_array_4[1] = (unsigned char) ( ( ( char_array_3[0] & 0x03 ) << 4 ) + ( ( char_array_3[1] & 0xf0 ) >> 4 ) );
char_array_4[2] = (unsigned char) ( ( ( char_array_3[1] & 0x0f ) << 2 ) + ( ( char_array_3[2] & 0xc0 ) >> 6 ) );
char_array_4[3] = (unsigned char) ( char_array_3[2] & 0x3f );
for(i = 0; (i <4) ; i++)
ret += chars[char_array_4[i]];
i = 0;
}
}
if (i)
{
for(j = i; j < 3; j++)
char_array_3[j] = '\0';
char_array_4[0] = (char_array_3[0] & 0xfc) >> 2;
char_array_4[1] = ((char_array_3[0] & 0x03) << 4) + ((char_array_3[1] & 0xf0) >> 4);
char_array_4[2] = ((char_array_3[1] & 0x0f) << 2) + ((char_array_3[2] & 0xc0) >> 6);
char_array_4[3] = char_array_3[2] & 0x3f;
for (j = 0; (j < i + 1); j++)
ret += chars[char_array_4[j]];
while((i++ < 3))
ret += '=';
}
return ret;
}
inline std::string decode(std::string const& encoded_string) {
size_t in_len = encoded_string.size();
size_t i = 0;
size_t j = 0;
int in_ = 0;
unsigned char char_array_4[4], char_array_3[3];
std::string ret;
while (in_len-- && ( encoded_string[in_] != '=') && is_base64(encoded_string[in_])) {
char_array_4[i++] = encoded_string[in_]; in_++;
if (i ==4) {
for (i = 0; i <4; i++)
char_array_4[i] = (unsigned char) chars.find( char_array_4[i] );
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (i = 0; (i < 3); i++)
ret += char_array_3[i];
i = 0;
}
}
if (i) {
for (j = i; j <4; j++)
char_array_4[j] = 0;
for (j = 0; j <4; j++)
char_array_4[j] = (unsigned char) chars.find( char_array_4[j] );
char_array_3[0] = (char_array_4[0] << 2) + ((char_array_4[1] & 0x30) >> 4);
char_array_3[1] = ((char_array_4[1] & 0xf) << 4) + ((char_array_4[2] & 0x3c) >> 2);
char_array_3[2] = ((char_array_4[2] & 0x3) << 6) + char_array_4[3];
for (j = 0; (j < i - 1); j++) ret += char_array_3[j];
}
return ret;
}
} // base64
#endif // CEREAL_EXTERNAL_BASE64_HPP_
#ifndef RAPIDJSON_DOCUMENT_H_
#define RAPIDJSON_DOCUMENT_H_
#include "reader.h"
#include "internal/strfunc.h"
#include <new> // placement new
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace rapidjson {
///////////////////////////////////////////////////////////////////////////////
// GenericValue
//! Represents a JSON value. Use Value for UTF8 encoding and default allocator.
/*!
A JSON value can be one of 7 types. This class is a variant type supporting
these types.
Use the Value if UTF8 and default allocator
\tparam Encoding Encoding of the value. (Even non-string values need to have the same encoding in a document)
\tparam Allocator Allocator type for allocating memory of object, array and string.
*/
#pragma pack (push, 4)
template <typename Encoding, typename Allocator = MemoryPoolAllocator<> >
class GenericValue {
public:
//! Name-value pair in an object.
struct Member {
GenericValue<Encoding, Allocator> name; //!< name of member (must be a string)
GenericValue<Encoding, Allocator> value; //!< value of member.
};
typedef Encoding EncodingType; //!< Encoding type from template parameter.
typedef Allocator AllocatorType; //!< Allocator type from template parameter.
typedef typename Encoding::Ch Ch; //!< Character type derived from Encoding.
typedef Member* MemberIterator; //!< Member iterator for iterating in object.
typedef const Member* ConstMemberIterator; //!< Constant member iterator for iterating in object.
typedef GenericValue* ValueIterator; //!< Value iterator for iterating in array.
typedef const GenericValue* ConstValueIterator; //!< Constant value iterator for iterating in array.
//!@name Constructors and destructor.
//@{
//! Default constructor creates a null value.
GenericValue() : flags_(kNull_Flag) {}
//! Copy constructor is not permitted.
private:
GenericValue(const GenericValue& rhs);
public:
//! Constructor with JSON value type.
/*! This creates a Value of specified type with default content.
\param type Type of the value.
\note Default content for number is zero.
*/
GenericValue(Type type) {
static const unsigned defaultFlags[7] = {
kNull_Flag, kFalseFlag, kTrueFlag, kObjectFlag, kArrayFlag, kConstStringFlag,
kNumberFlag | kIntFlag | kUintFlag | kInt64Flag | kUint64Flag | kDoubleFlag
};
RAPIDJSON_ASSERT(type <= kNumberType);
flags_ = defaultFlags[type];
memset(&data_, 0, sizeof(data_));
}
//! Constructor for boolean value.
GenericValue(bool b) : flags_(b ? kTrueFlag : kFalseFlag) {}
//! Constructor for int value.
GenericValue(int i) : flags_(kNumberIntFlag) {
data_.n.i64 = i;
if (i >= 0)
flags_ |= kUintFlag | kUint64Flag;
}
//! Constructor for unsigned value.
GenericValue(unsigned u) : flags_(kNumberUintFlag) {
data_.n.u64 = u;
if (!(u & 0x80000000))
flags_ |= kIntFlag | kInt64Flag;
}
//! Constructor for int64_t value.
GenericValue(int64_t i64) : flags_(kNumberInt64Flag) {
data_.n.i64 = i64;
if (i64 >= 0) {
flags_ |= kNumberUint64Flag;
if (!(i64 & 0xFFFFFFFF00000000LL))
flags_ |= kUintFlag;
if (!(i64 & 0xFFFFFFFF80000000LL))
flags_ |= kIntFlag;
}
else if (i64 >= -2147483648LL)
flags_ |= kIntFlag;
}
//! Constructor for uint64_t value.
GenericValue(uint64_t u64) : flags_(kNumberUint64Flag) {
data_.n.u64 = u64;
if (!(u64 & 0x8000000000000000ULL))
flags_ |= kInt64Flag;
if (!(u64 & 0xFFFFFFFF00000000ULL))
flags_ |= kUintFlag;
if (!(u64 & 0xFFFFFFFF80000000ULL))
flags_ |= kIntFlag;
}
//! Constructor for double value.
GenericValue(double d) : flags_(kNumberDoubleFlag) { data_.n.d = d; }
//! Constructor for constant string (i.e. do not make a copy of string)
GenericValue(const Ch* s, SizeType length) {
RAPIDJSON_ASSERT(s != NULL);
flags_ = kConstStringFlag;
data_.s.str = s;
data_.s.length = length;
}
//! Constructor for constant string (i.e. do not make a copy of string)
GenericValue(const Ch* s) { SetStringRaw(s, internal::StrLen(s)); }
//! Constructor for copy-string (i.e. do make a copy of string)
GenericValue(const Ch* s, SizeType length, Allocator& allocator) { SetStringRaw(s, length, allocator); }
//! Constructor for copy-string (i.e. do make a copy of string)
GenericValue(const Ch*s, Allocator& allocator) { SetStringRaw(s, internal::StrLen(s), allocator); }
//! Destructor.
/*! Need to destruct elements of array, members of object, or copy-string.
*/
~GenericValue() {
if (Allocator::kNeedFree) { // Shortcut by Allocator's trait
switch(flags_) {
case kArrayFlag:
for (GenericValue* v = data_.a.elements; v != data_.a.elements + data_.a.size; ++v)
v->~GenericValue();
Allocator::Free(data_.a.elements);
break;
case kObjectFlag:
for (Member* m = data_.o.members; m != data_.o.members + data_.o.size; ++m) {
m->name.~GenericValue();
m->value.~GenericValue();
}
Allocator::Free(data_.o.members);
break;
case kCopyStringFlag:
Allocator::Free(const_cast<Ch*>(data_.s.str));
break;
}
}
}
//@}
//!@name Assignment operators
//@{
//! Assignment with move semantics.
/*! \param rhs Source of the assignment. It will become a null value after assignment.
*/
GenericValue& operator=(GenericValue& rhs) {
RAPIDJSON_ASSERT(this != &rhs);
this->~GenericValue();
memcpy(this, &rhs, sizeof(GenericValue));
rhs.flags_ = kNull_Flag;
return *this;
}
//! Assignment with primitive types.
/*! \tparam T Either Type, int, unsigned, int64_t, uint64_t, const Ch*
\param value The value to be assigned.
*/
template <typename T>
GenericValue& operator=(T value) {
this->~GenericValue();
new (this) GenericValue(value);
return *this;
}
//@}
//!@name Type
//@{
Type GetType() const { return static_cast<Type>(flags_ & kTypeMask); }
bool IsNull_() const { return flags_ == kNull_Flag; }
bool IsFalse() const { return flags_ == kFalseFlag; }
bool IsTrue() const { return flags_ == kTrueFlag; }
bool IsBool_() const { return (flags_ & kBool_Flag) != 0; }
bool IsObject() const { return flags_ == kObjectFlag; }
bool IsArray() const { return flags_ == kArrayFlag; }
bool IsNumber() const { return (flags_ & kNumberFlag) != 0; }
bool IsInt() const { return (flags_ & kIntFlag) != 0; }
bool IsUint() const { return (flags_ & kUintFlag) != 0; }
bool IsInt64() const { return (flags_ & kInt64Flag) != 0; }
bool IsUint64() const { return (flags_ & kUint64Flag) != 0; }
bool IsDouble() const { return (flags_ & kDoubleFlag) != 0; }
bool IsString() const { return (flags_ & kStringFlag) != 0; }
//@}
//!@name Null_
//@{
GenericValue& SetNull_() { this->~GenericValue(); new (this) GenericValue(); return *this; }
//@}
//!@name Bool_
//@{
bool GetBool_() const { RAPIDJSON_ASSERT(IsBool_()); return flags_ == kTrueFlag; }
GenericValue& SetBool_(bool b) { this->~GenericValue(); new (this) GenericValue(b); return *this; }
//@}
//!@name Object
//@{
//! Set this value as an empty object.
GenericValue& SetObject() { this->~GenericValue(); new (this) GenericValue(kObjectType); return *this; }
//! Get the value associated with the object's name.
GenericValue& operator[](const Ch* name) {
if (Member* member = FindMember(name))
return member->value;
else {
static GenericValue Null_Value;
return Null_Value;
}
}
const GenericValue& operator[](const Ch* name) const { return const_cast<GenericValue&>(*this)[name]; }
//! Member iterators.
ConstMemberIterator MemberBegin() const { RAPIDJSON_ASSERT(IsObject()); return data_.o.members; }
ConstMemberIterator MemberEnd() const { RAPIDJSON_ASSERT(IsObject()); return data_.o.members + data_.o.size; }
MemberIterator MemberBegin() { RAPIDJSON_ASSERT(IsObject()); return data_.o.members; }
MemberIterator MemberEnd() { RAPIDJSON_ASSERT(IsObject()); return data_.o.members + data_.o.size; }
//! Check whether a member exists in the object.
bool HasMember(const Ch* name) const { return FindMember(name) != 0; }
//! Add a member (name-value pair) to the object.
/*! \param name A string value as name of member.
\param value Value of any type.
\param allocator Allocator for reallocating memory.
\return The value itself for fluent API.
\note The ownership of name and value will be transfered to this object if success.
*/
GenericValue& AddMember(GenericValue& name, GenericValue& value, Allocator& allocator) {
RAPIDJSON_ASSERT(IsObject());
RAPIDJSON_ASSERT(name.IsString());
Object& o = data_.o;
if (o.size >= o.capacity) {
if (o.capacity == 0) {
o.capacity = kDefaultObjectCapacity;
o.members = (Member*)allocator.Malloc(o.capacity * sizeof(Member));
}
else {
SizeType oldCapacity = o.capacity;
o.capacity *= 2;
o.members = (Member*)allocator.Realloc(o.members, oldCapacity * sizeof(Member), o.capacity * sizeof(Member));
}
}
o.members[o.size].name.RawAssign(name);
o.members[o.size].value.RawAssign(value);
o.size++;
return *this;
}
GenericValue& AddMember(const Ch* name, Allocator& nameAllocator, GenericValue& value, Allocator& allocator) {
GenericValue n(name, internal::StrLen(name), nameAllocator);
return AddMember(n, value, allocator);
}
GenericValue& AddMember(const Ch* name, GenericValue& value, Allocator& allocator) {
GenericValue n(name, internal::StrLen(name));
return AddMember(n, value, allocator);
}
template <typename T>
GenericValue& AddMember(const Ch* name, T value, Allocator& allocator) {
GenericValue n(name, internal::StrLen(name));
GenericValue v(value);
return AddMember(n, v, allocator);
}
//! Remove a member in object by its name.
/*! \param name Name of member to be removed.
\return Whether the member existed.
\note Removing member is implemented by moving the last member. So the ordering of members is changed.
*/
bool RemoveMember(const Ch* name) {
RAPIDJSON_ASSERT(IsObject());
if (Member* m = FindMember(name)) {
RAPIDJSON_ASSERT(data_.o.size > 0);
RAPIDJSON_ASSERT(data_.o.members != 0);
Member* last = data_.o.members + (data_.o.size - 1);
if (data_.o.size > 1 && m != last) {
// Move the last one to this place
m->name = last->name;
m->value = last->value;
}
else {
// Only one left, just destroy
m->name.~GenericValue();
m->value.~GenericValue();
}
--data_.o.size;
return true;
}
return false;
}
//@}
//!@name Array
//@{
//! Set this value as an empty array.
GenericValue& SetArray() { this->~GenericValue(); new (this) GenericValue(kArrayType); return *this; }
//! Get the number of elements in array.
SizeType Size() const { RAPIDJSON_ASSERT(IsArray()); return data_.a.size; }
//! Get the capacity of array.
SizeType Capacity() const { RAPIDJSON_ASSERT(IsArray()); return data_.a.capacity; }
//! Check whether the array is empty.
bool Empty() const { RAPIDJSON_ASSERT(IsArray()); return data_.a.size == 0; }
//! Remove all elements in the array.
/*! This function do not deallocate memory in the array, i.e. the capacity is unchanged.
*/
void Clear() {
RAPIDJSON_ASSERT(IsArray());
for (SizeType i = 0; i < data_.a.size; ++i)
data_.a.elements[i].~GenericValue();
data_.a.size = 0;
}
//! Get an element from array by index.
/*! \param index Zero-based index of element.
\note
\code
Value a(kArrayType);
a.PushBack(123);
int x = a[0].GetInt(); // Error: operator[ is ambiguous, as 0 also mean a null pointer of const char* type.
int y = a[SizeType(0)].GetInt(); // Cast to SizeType will work.
int z = a[0u].GetInt(); // This works too.
\endcode
*/
GenericValue& operator[](SizeType index) {
RAPIDJSON_ASSERT(IsArray());
RAPIDJSON_ASSERT(index < data_.a.size);
return data_.a.elements[index];
}
const GenericValue& operator[](SizeType index) const { return const_cast<GenericValue&>(*this)[index]; }
//! Element iterator
ValueIterator Begin() { RAPIDJSON_ASSERT(IsArray()); return data_.a.elements; }
ValueIterator End() { RAPIDJSON_ASSERT(IsArray()); return data_.a.elements + data_.a.size; }
ConstValueIterator Begin() const { return const_cast<GenericValue&>(*this).Begin(); }
ConstValueIterator End() const { return const_cast<GenericValue&>(*this).End(); }
//! Request the array to have enough capacity to store elements.
/*! \param newCapacity The capacity that the array at least need to have.
\param allocator The allocator for allocating memory. It must be the same one use previously.
\return The value itself for fluent API.
*/
GenericValue& Reserve(SizeType newCapacity, Allocator &allocator) {
RAPIDJSON_ASSERT(IsArray());
if (newCapacity > data_.a.capacity) {
data_.a.elements = (GenericValue*)allocator.Realloc(data_.a.elements, data_.a.capacity * sizeof(GenericValue), newCapacity * sizeof(GenericValue));
data_.a.capacity = newCapacity;
}
return *this;
}
//! Append a value at the end of the array.
/*! \param value The value to be appended.
\param allocator The allocator for allocating memory. It must be the same one use previously.
\return The value itself for fluent API.
\note The ownership of the value will be transfered to this object if success.
\note If the number of elements to be appended is known, calls Reserve() once first may be more efficient.
*/
GenericValue& PushBack(GenericValue& value, Allocator& allocator) {
RAPIDJSON_ASSERT(IsArray());
if (data_.a.size >= data_.a.capacity)
Reserve(data_.a.capacity == 0 ? kDefaultArrayCapacity : data_.a.capacity * 2, allocator);
data_.a.elements[data_.a.size++].RawAssign(value);
return *this;
}
template <typename T>
GenericValue& PushBack(T value, Allocator& allocator) {
GenericValue v(value);
return PushBack(v, allocator);
}
//! Remove the last element in the array.
GenericValue& PopBack() {
RAPIDJSON_ASSERT(IsArray());
RAPIDJSON_ASSERT(!Empty());
data_.a.elements[--data_.a.size].~GenericValue();
return *this;
}
//@}
//!@name Number
//@{
int GetInt() const { RAPIDJSON_ASSERT(flags_ & kIntFlag); return data_.n.i.i; }
unsigned GetUint() const { RAPIDJSON_ASSERT(flags_ & kUintFlag); return data_.n.u.u; }
int64_t GetInt64() const { RAPIDJSON_ASSERT(flags_ & kInt64Flag); return data_.n.i64; }
uint64_t GetUint64() const { RAPIDJSON_ASSERT(flags_ & kUint64Flag); return data_.n.u64; }
double GetDouble() const {
RAPIDJSON_ASSERT(IsNumber());
if ((flags_ & kDoubleFlag) != 0) return data_.n.d; // exact type, no conversion.
if ((flags_ & kIntFlag) != 0) return data_.n.i.i; // int -> double
if ((flags_ & kUintFlag) != 0) return data_.n.u.u; // unsigned -> double
if ((flags_ & kInt64Flag) != 0) return (double)data_.n.i64; // int64_t -> double (may lose precision)
RAPIDJSON_ASSERT((flags_ & kUint64Flag) != 0); return (double)data_.n.u64; // uint64_t -> double (may lose precision)
}
GenericValue& SetInt(int i) { this->~GenericValue(); new (this) GenericValue(i); return *this; }
GenericValue& SetUint(unsigned u) { this->~GenericValue(); new (this) GenericValue(u); return *this; }
GenericValue& SetInt64(int64_t i64) { this->~GenericValue(); new (this) GenericValue(i64); return *this; }
GenericValue& SetUint64(uint64_t u64) { this->~GenericValue(); new (this) GenericValue(u64); return *this; }
GenericValue& SetDouble(double d) { this->~GenericValue(); new (this) GenericValue(d); return *this; }
//@}
//!@name String
//@{
const Ch* GetString() const { RAPIDJSON_ASSERT(IsString()); return data_.s.str; }
//! Get the length of string.
/*! Since rapidjson permits "\u0000" in the json string, strlen(v.GetString()) may not equal to v.GetStringLength().
*/
SizeType GetStringLength() const { RAPIDJSON_ASSERT(IsString()); return data_.s.length; }
//! Set this value as a string without copying source string.
/*! This version has better performance with supplied length, and also support string containing null character.
\param s source string pointer.
\param length The length of source string, excluding the trailing null terminator.
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s, SizeType length) { this->~GenericValue(); SetStringRaw(s, length); return *this; }
//! Set this value as a string without copying source string.
/*! \param s source string pointer.
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s) { return SetString(s, internal::StrLen(s)); }
//! Set this value as a string by copying from source string.
/*! This version has better performance with supplied length, and also support string containing null character.
\param s source string.
\param length The length of source string, excluding the trailing null terminator.
\param allocator Allocator for allocating copied buffer. Commonly use document.GetAllocator().
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s, SizeType length, Allocator& allocator) { this->~GenericValue(); SetStringRaw(s, length, allocator); return *this; }
//! Set this value as a string by copying from source string.
/*! \param s source string.
\param allocator Allocator for allocating copied buffer. Commonly use document.GetAllocator().
\return The value itself for fluent API.
*/
GenericValue& SetString(const Ch* s, Allocator& allocator) { SetString(s, internal::StrLen(s), allocator); return *this; }
//@}
//! Generate events of this value to a Handler.
/*! This function adopts the GoF visitor pattern.
Typical usage is to output this JSON value as JSON text via Writer, which is a Handler.
It can also be used to deep clone this value via GenericDocument, which is also a Handler.
\tparam Handler type of handler.
\param handler An object implementing concept Handler.
*/
template <typename Handler>
const GenericValue& Accept(Handler& handler) const {
switch(GetType()) {
case kNull_Type: handler.Null_(); break;
case kFalseType: handler.Bool_(false); break;
case kTrueType: handler.Bool_(true); break;
case kObjectType:
handler.StartObject();
for (Member* m = data_.o.members; m != data_.o.members + data_.o.size; ++m) {
handler.String(m->name.data_.s.str, m->name.data_.s.length, false);
m->value.Accept(handler);
}
handler.EndObject(data_.o.size);
break;
case kArrayType:
handler.StartArray();
for (GenericValue* v = data_.a.elements; v != data_.a.elements + data_.a.size; ++v)
v->Accept(handler);
handler.EndArray(data_.a.size);
break;
case kStringType:
handler.String(data_.s.str, data_.s.length, false);
break;
case kNumberType:
if (IsInt()) handler.Int(data_.n.i.i);
else if (IsUint()) handler.Uint(data_.n.u.u);
else if (IsInt64()) handler.Int64(data_.n.i64);
else if (IsUint64()) handler.Uint64(data_.n.u64);
else handler.Double(data_.n.d);
break;
}
return *this;
}
private:
template <typename, typename>
friend class GenericDocument;
enum {
kBool_Flag = 0x100,
kNumberFlag = 0x200,
kIntFlag = 0x400,
kUintFlag = 0x800,
kInt64Flag = 0x1000,
kUint64Flag = 0x2000,
kDoubleFlag = 0x4000,
kStringFlag = 0x100000,
kCopyFlag = 0x200000,
// Initial flags of different types.
kNull_Flag = kNull_Type,
kTrueFlag = kTrueType | kBool_Flag,
kFalseFlag = kFalseType | kBool_Flag,
kNumberIntFlag = kNumberType | kNumberFlag | kIntFlag | kInt64Flag,
kNumberUintFlag = kNumberType | kNumberFlag | kUintFlag | kUint64Flag | kInt64Flag,
kNumberInt64Flag = kNumberType | kNumberFlag | kInt64Flag,
kNumberUint64Flag = kNumberType | kNumberFlag | kUint64Flag,
kNumberDoubleFlag = kNumberType | kNumberFlag | kDoubleFlag,
kConstStringFlag = kStringType | kStringFlag,
kCopyStringFlag = kStringType | kStringFlag | kCopyFlag,
kObjectFlag = kObjectType,
kArrayFlag = kArrayType,
kTypeMask = 0xFF // bitwise-and with mask of 0xFF can be optimized by compiler
};
static const SizeType kDefaultArrayCapacity = 16;
static const SizeType kDefaultObjectCapacity = 16;
struct String {
const Ch* str;
SizeType length;
unsigned hashcode; //!< reserved
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
// By using proper binary layout, retrieval of different integer types do not need conversions.
union Number {
#if RAPIDJSON_ENDIAN == RAPIDJSON_LITTLEENDIAN
struct I {
int i;
char padding[4];
}i;
struct U {
unsigned u;
char padding2[4];
}u;
#else
struct I {
char padding[4];
int i;
}i;
struct U {
char padding2[4];
unsigned u;
}u;
#endif
int64_t i64;
uint64_t u64;
double d;
}; // 8 bytes
struct Object {
Member* members;
SizeType size;
SizeType capacity;
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
struct Array {
GenericValue<Encoding, Allocator>* elements;
SizeType size;
SizeType capacity;
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
union Data {
String s;
Number n;
Object o;
Array a;
}; // 12 bytes in 32-bit mode, 16 bytes in 64-bit mode
//! Find member by name.
Member* FindMember(const Ch* name) {
RAPIDJSON_ASSERT(name);
RAPIDJSON_ASSERT(IsObject());
SizeType length = internal::StrLen(name);
Object& o = data_.o;
for (Member* member = o.members; member != data_.o.members + data_.o.size; ++member)
if (length == member->name.data_.s.length && memcmp(member->name.data_.s.str, name, length * sizeof(Ch)) == 0)
return member;
return 0;
}
const Member* FindMember(const Ch* name) const { return const_cast<GenericValue&>(*this).FindMember(name); }
// Initialize this value as array with initial data, without calling destructor.
void SetArrayRaw(GenericValue* values, SizeType count, Allocator& alloctaor) {
flags_ = kArrayFlag;
data_.a.elements = (GenericValue*)alloctaor.Malloc(count * sizeof(GenericValue));
memcpy(data_.a.elements, values, count * sizeof(GenericValue));
data_.a.size = data_.a.capacity = count;
}
//! Initialize this value as object with initial data, without calling destructor.
void SetObjectRaw(Member* members, SizeType count, Allocator& alloctaor) {
flags_ = kObjectFlag;
data_.o.members = (Member*)alloctaor.Malloc(count * sizeof(Member));
memcpy(data_.o.members, members, count * sizeof(Member));
data_.o.size = data_.o.capacity = count;
}
//! Initialize this value as constant string, without calling destructor.
void SetStringRaw(const Ch* s, SizeType length) {
RAPIDJSON_ASSERT(s != NULL);
flags_ = kConstStringFlag;
data_.s.str = s;
data_.s.length = length;
}
//! Initialize this value as copy string with initial data, without calling destructor.
void SetStringRaw(const Ch* s, SizeType length, Allocator& allocator) {
RAPIDJSON_ASSERT(s != NULL);
flags_ = kCopyStringFlag;
data_.s.str = (Ch *)allocator.Malloc((length + 1) * sizeof(Ch));
data_.s.length = length;
memcpy(const_cast<Ch*>(data_.s.str), s, length * sizeof(Ch));
const_cast<Ch*>(data_.s.str)[length] = '\0';
}
//! Assignment without calling destructor
void RawAssign(GenericValue& rhs) {
memcpy(this, &rhs, sizeof(GenericValue));
rhs.flags_ = kNull_Flag;
}
Data data_;
unsigned flags_;
};
#pragma pack (pop)
//! Value with UTF8 encoding.
typedef GenericValue<UTF8<> > Value;
///////////////////////////////////////////////////////////////////////////////
// GenericDocument
//! A document for parsing JSON text as DOM.
/*!
\implements Handler
\tparam Encoding encoding for both parsing and string storage.
\tparam Alloactor allocator for allocating memory for the DOM, and the stack during parsing.
*/
template <typename Encoding, typename Allocator = MemoryPoolAllocator<> >
class GenericDocument : public GenericValue<Encoding, Allocator> {
public:
typedef typename Encoding::Ch Ch; //!< Character type derived from Encoding.
typedef GenericValue<Encoding, Allocator> ValueType; //!< Value type of the document.
typedef Allocator AllocatorType; //!< Allocator type from template parameter.
//! Constructor
/*! \param allocator Optional allocator for allocating stack memory.
\param stackCapacity Initial capacity of stack in bytes.
*/
GenericDocument(Allocator* allocator = 0, size_t stackCapacity = kDefaultStackCapacity) : stack_(allocator, stackCapacity), parseError_(0), errorOffset_(0) {}
//! Parse JSON text from an input stream.
/*! \tparam parseFlags Combination of ParseFlag.
\param stream Input stream to be parsed.
\return The document itself for fluent API.
*/
template <unsigned parseFlags, typename Stream>
GenericDocument& ParseStream(Stream& stream) {
ValueType::SetNull_(); // Remove existing root if exist
GenericReader<Encoding, Allocator> reader;
if (reader.template Parse<parseFlags>(stream, *this)) {
RAPIDJSON_ASSERT(stack_.GetSize() == sizeof(ValueType)); // Got one and only one root object
this->RawAssign(*stack_.template Pop<ValueType>(1)); // Add this-> to prevent issue 13.
parseError_ = 0;
errorOffset_ = 0;
}
else {
parseError_ = reader.GetParseError();
errorOffset_ = reader.GetErrorOffset();
ClearStack();
}
return *this;
}
//! Parse JSON text from a mutable string.
/*! \tparam parseFlags Combination of ParseFlag.
\param str Mutable zero-terminated string to be parsed.
\return The document itself for fluent API.
*/
template <unsigned parseFlags>
GenericDocument& ParseInsitu(Ch* str) {
GenericInsituStringStream<Encoding> s(str);
return ParseStream<parseFlags | kParseInsituFlag>(s);
}
//! Parse JSON text from a read-only string.
/*! \tparam parseFlags Combination of ParseFlag (must not contain kParseInsituFlag).
\param str Read-only zero-terminated string to be parsed.
*/
template <unsigned parseFlags>
GenericDocument& Parse(const Ch* str) {
RAPIDJSON_ASSERT(!(parseFlags & kParseInsituFlag));
GenericStringStream<Encoding> s(str);
return ParseStream<parseFlags>(s);
}
//! Whether a parse error was occured in the last parsing.
bool HasParseError() const { return parseError_ != 0; }
//! Get the message of parsing error.
const char* GetParseError() const { return parseError_; }
//! Get the offset in character of the parsing error.
size_t GetErrorOffset() const { return errorOffset_; }
//! Get the allocator of this document.
Allocator& GetAllocator() { return stack_.GetAllocator(); }
//! Get the capacity of stack in bytes.
size_t GetStackCapacity() const { return stack_.GetCapacity(); }
private:
// Prohibit assignment
GenericDocument& operator=(const GenericDocument&);
friend class GenericReader<Encoding, Allocator>; // for Reader to call the following private handler functions
// Implementation of Handler
void Null_() { new (stack_.template Push<ValueType>()) ValueType(); }
void Bool_(bool b) { new (stack_.template Push<ValueType>()) ValueType(b); }
void Int(int i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Uint(unsigned i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Int64(int64_t i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Uint64(uint64_t i) { new (stack_.template Push<ValueType>()) ValueType(i); }
void Double(double d) { new (stack_.template Push<ValueType>()) ValueType(d); }
void String(const Ch* str, SizeType length, bool copy) {
if (copy)
new (stack_.template Push<ValueType>()) ValueType(str, length, GetAllocator());
else
new (stack_.template Push<ValueType>()) ValueType(str, length);
}
void StartObject() { new (stack_.template Push<ValueType>()) ValueType(kObjectType); }
void EndObject(SizeType memberCount) {
typename ValueType::Member* members = stack_.template Pop<typename ValueType::Member>(memberCount);
stack_.template Top<ValueType>()->SetObjectRaw(members, (SizeType)memberCount, GetAllocator());
}
void StartArray() { new (stack_.template Push<ValueType>()) ValueType(kArrayType); }
void EndArray(SizeType elementCount) {
ValueType* elements = stack_.template Pop<ValueType>(elementCount);
stack_.template Top<ValueType>()->SetArrayRaw(elements, elementCount, GetAllocator());
}
void ClearStack() {
if (Allocator::kNeedFree)
while (stack_.GetSize() > 0) // Here assumes all elements in stack array are GenericValue (Member is actually 2 GenericValue objects)
(stack_.template Pop<ValueType>(1))->~ValueType();
else
stack_.Clear();
}
static const size_t kDefaultStackCapacity = 1024;
internal::Stack<Allocator> stack_;
const char* parseError_;
size_t errorOffset_;
};
typedef GenericDocument<UTF8<> > Document;
} // namespace rapidjson
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_DOCUMENT_H_
#ifndef RAPIDJSON_FILESTREAM_H_
#define RAPIDJSON_FILESTREAM_H_
#include <cstdio>
namespace rapidjson {
//! Wrapper of C file stream for input or output.
/*!
This simple wrapper does not check the validity of the stream.
\implements Stream
*/
class FileStream {
public:
typedef char Ch; //!< Character type. Only support char.
FileStream(FILE* fp) : fp_(fp), count_(0) { Read(); }
char Peek() const { return current_; }
char Take() { char c = current_; Read(); return c; }
size_t Tell() const { return count_; }
void Put(char c) { fputc(c, fp_); }
// Not implemented
char* PutBegin() { return 0; }
size_t PutEnd(char*) { return 0; }
private:
void Read() {
RAPIDJSON_ASSERT(fp_ != 0);
int c = fgetc(fp_);
if (c != EOF) {
current_ = (char)c;
count_++;
}
else
current_ = '\0';
}
FILE* fp_;
char current_;
size_t count_;
};
} // namespace rapidjson
#endif // RAPIDJSON_FILESTREAM_H_
// Generic*Stream code from https://code.google.com/p/rapidjson/issues/detail?id=20
#ifndef RAPIDJSON_GENERICSTREAM_H_
#define RAPIDJSON_GENERICSTREAM_H_
#include "rapidjson.h"
#include <iostream>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable: 4127) // conditional expression is constant
#pragma warning(disable: 4512) // assignment operator could not be generated
#pragma warning(disable: 4100) // unreferenced formal parameter
#endif
namespace rapidjson {
//! Wrapper of std::istream for input.
class GenericReadStream {
public:
typedef char Ch; //!< Character type (byte).
//! Constructor.
/*!
\param is Input stream.
*/
GenericReadStream(std::istream & is) : is_(&is) {
}
Ch Peek() const {
if(is_->eof()) return '\0';
return static_cast<char>(is_->peek());
}
Ch Take() {
if(is_->eof()) return '\0';
return static_cast<char>(is_->get());
}
size_t Tell() const {
return (int)is_->tellg();
}
// Not implemented
void Put(Ch) { RAPIDJSON_ASSERT(false); }
void Flush() { RAPIDJSON_ASSERT(false); }
Ch* PutBegin() { RAPIDJSON_ASSERT(false); return 0; }
size_t PutEnd(Ch*) { RAPIDJSON_ASSERT(false); return 0; }
std::istream * is_;
};
//! Wrapper of std::ostream for output.
class GenericWriteStream {
public:
typedef char Ch; //!< Character type. Only support char.
//! Constructor
/*!
\param os Output stream.
*/
GenericWriteStream(std::ostream& os) : os_(os) {
}
void Put(char c) {
os_.put(c);
}
void PutN(char c, size_t n) {
for (size_t i = 0; i < n; ++i) {
Put(c);
}
}
void Flush() {
os_.flush();
}
size_t Tell() const {
return (int)os_.tellp();
}
// Not implemented
char Peek() const { RAPIDJSON_ASSERT(false); }
char Take() { RAPIDJSON_ASSERT(false); }
char* PutBegin() { RAPIDJSON_ASSERT(false); return 0; }
size_t PutEnd(char*) { RAPIDJSON_ASSERT(false); return 0; }
private:
std::ostream& os_;
};
template<>
inline void PutN(GenericWriteStream& stream, char c, size_t n) {
stream.PutN(c, n);
}
} // namespace rapidjson
// On MSVC, restore warnings state
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_GENERICSTREAM_H_
#ifndef RAPIDJSON_POW10_
#define RAPIDJSON_POW10_
namespace rapidjson {
namespace internal {
//! Computes integer powers of 10 in double (10.0^n).
/*! This function uses lookup table for fast and accurate results.
\param n positive/negative exponent. Must <= 308.
\return 10.0^n
*/
inline double Pow10(int n) {
static const double e[] = { // 1e-308...1e308: 617 * 8 bytes = 4936 bytes
1e-308,1e-307,1e-306,1e-305,1e-304,1e-303,1e-302,1e-301,1e-300,
1e-299,1e-298,1e-297,1e-296,1e-295,1e-294,1e-293,1e-292,1e-291,1e-290,1e-289,1e-288,1e-287,1e-286,1e-285,1e-284,1e-283,1e-282,1e-281,1e-280,
1e-279,1e-278,1e-277,1e-276,1e-275,1e-274,1e-273,1e-272,1e-271,1e-270,1e-269,1e-268,1e-267,1e-266,1e-265,1e-264,1e-263,1e-262,1e-261,1e-260,
1e-259,1e-258,1e-257,1e-256,1e-255,1e-254,1e-253,1e-252,1e-251,1e-250,1e-249,1e-248,1e-247,1e-246,1e-245,1e-244,1e-243,1e-242,1e-241,1e-240,
1e-239,1e-238,1e-237,1e-236,1e-235,1e-234,1e-233,1e-232,1e-231,1e-230,1e-229,1e-228,1e-227,1e-226,1e-225,1e-224,1e-223,1e-222,1e-221,1e-220,
1e-219,1e-218,1e-217,1e-216,1e-215,1e-214,1e-213,1e-212,1e-211,1e-210,1e-209,1e-208,1e-207,1e-206,1e-205,1e-204,1e-203,1e-202,1e-201,1e-200,
1e-199,1e-198,1e-197,1e-196,1e-195,1e-194,1e-193,1e-192,1e-191,1e-190,1e-189,1e-188,1e-187,1e-186,1e-185,1e-184,1e-183,1e-182,1e-181,1e-180,
1e-179,1e-178,1e-177,1e-176,1e-175,1e-174,1e-173,1e-172,1e-171,1e-170,1e-169,1e-168,1e-167,1e-166,1e-165,1e-164,1e-163,1e-162,1e-161,1e-160,
1e-159,1e-158,1e-157,1e-156,1e-155,1e-154,1e-153,1e-152,1e-151,1e-150,1e-149,1e-148,1e-147,1e-146,1e-145,1e-144,1e-143,1e-142,1e-141,1e-140,
1e-139,1e-138,1e-137,1e-136,1e-135,1e-134,1e-133,1e-132,1e-131,1e-130,1e-129,1e-128,1e-127,1e-126,1e-125,1e-124,1e-123,1e-122,1e-121,1e-120,
1e-119,1e-118,1e-117,1e-116,1e-115,1e-114,1e-113,1e-112,1e-111,1e-110,1e-109,1e-108,1e-107,1e-106,1e-105,1e-104,1e-103,1e-102,1e-101,1e-100,
1e-99, 1e-98, 1e-97, 1e-96, 1e-95, 1e-94, 1e-93, 1e-92, 1e-91, 1e-90, 1e-89, 1e-88, 1e-87, 1e-86, 1e-85, 1e-84, 1e-83, 1e-82, 1e-81, 1e-80,
1e-79, 1e-78, 1e-77, 1e-76, 1e-75, 1e-74, 1e-73, 1e-72, 1e-71, 1e-70, 1e-69, 1e-68, 1e-67, 1e-66, 1e-65, 1e-64, 1e-63, 1e-62, 1e-61, 1e-60,
1e-59, 1e-58, 1e-57, 1e-56, 1e-55, 1e-54, 1e-53, 1e-52, 1e-51, 1e-50, 1e-49, 1e-48, 1e-47, 1e-46, 1e-45, 1e-44, 1e-43, 1e-42, 1e-41, 1e-40,
1e-39, 1e-38, 1e-37, 1e-36, 1e-35, 1e-34, 1e-33, 1e-32, 1e-31, 1e-30, 1e-29, 1e-28, 1e-27, 1e-26, 1e-25, 1e-24, 1e-23, 1e-22, 1e-21, 1e-20,
1e-19, 1e-18, 1e-17, 1e-16, 1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1e+0,
1e+1, 1e+2, 1e+3, 1e+4, 1e+5, 1e+6, 1e+7, 1e+8, 1e+9, 1e+10, 1e+11, 1e+12, 1e+13, 1e+14, 1e+15, 1e+16, 1e+17, 1e+18, 1e+19, 1e+20,
1e+21, 1e+22, 1e+23, 1e+24, 1e+25, 1e+26, 1e+27, 1e+28, 1e+29, 1e+30, 1e+31, 1e+32, 1e+33, 1e+34, 1e+35, 1e+36, 1e+37, 1e+38, 1e+39, 1e+40,
1e+41, 1e+42, 1e+43, 1e+44, 1e+45, 1e+46, 1e+47, 1e+48, 1e+49, 1e+50, 1e+51, 1e+52, 1e+53, 1e+54, 1e+55, 1e+56, 1e+57, 1e+58, 1e+59, 1e+60,
1e+61, 1e+62, 1e+63, 1e+64, 1e+65, 1e+66, 1e+67, 1e+68, 1e+69, 1e+70, 1e+71, 1e+72, 1e+73, 1e+74, 1e+75, 1e+76, 1e+77, 1e+78, 1e+79, 1e+80,
1e+81, 1e+82, 1e+83, 1e+84, 1e+85, 1e+86, 1e+87, 1e+88, 1e+89, 1e+90, 1e+91, 1e+92, 1e+93, 1e+94, 1e+95, 1e+96, 1e+97, 1e+98, 1e+99, 1e+100,
1e+101,1e+102,1e+103,1e+104,1e+105,1e+106,1e+107,1e+108,1e+109,1e+110,1e+111,1e+112,1e+113,1e+114,1e+115,1e+116,1e+117,1e+118,1e+119,1e+120,
1e+121,1e+122,1e+123,1e+124,1e+125,1e+126,1e+127,1e+128,1e+129,1e+130,1e+131,1e+132,1e+133,1e+134,1e+135,1e+136,1e+137,1e+138,1e+139,1e+140,
1e+141,1e+142,1e+143,1e+144,1e+145,1e+146,1e+147,1e+148,1e+149,1e+150,1e+151,1e+152,1e+153,1e+154,1e+155,1e+156,1e+157,1e+158,1e+159,1e+160,
1e+161,1e+162,1e+163,1e+164,1e+165,1e+166,1e+167,1e+168,1e+169,1e+170,1e+171,1e+172,1e+173,1e+174,1e+175,1e+176,1e+177,1e+178,1e+179,1e+180,
1e+181,1e+182,1e+183,1e+184,1e+185,1e+186,1e+187,1e+188,1e+189,1e+190,1e+191,1e+192,1e+193,1e+194,1e+195,1e+196,1e+197,1e+198,1e+199,1e+200,
1e+201,1e+202,1e+203,1e+204,1e+205,1e+206,1e+207,1e+208,1e+209,1e+210,1e+211,1e+212,1e+213,1e+214,1e+215,1e+216,1e+217,1e+218,1e+219,1e+220,
1e+221,1e+222,1e+223,1e+224,1e+225,1e+226,1e+227,1e+228,1e+229,1e+230,1e+231,1e+232,1e+233,1e+234,1e+235,1e+236,1e+237,1e+238,1e+239,1e+240,
1e+241,1e+242,1e+243,1e+244,1e+245,1e+246,1e+247,1e+248,1e+249,1e+250,1e+251,1e+252,1e+253,1e+254,1e+255,1e+256,1e+257,1e+258,1e+259,1e+260,
1e+261,1e+262,1e+263,1e+264,1e+265,1e+266,1e+267,1e+268,1e+269,1e+270,1e+271,1e+272,1e+273,1e+274,1e+275,1e+276,1e+277,1e+278,1e+279,1e+280,
1e+281,1e+282,1e+283,1e+284,1e+285,1e+286,1e+287,1e+288,1e+289,1e+290,1e+291,1e+292,1e+293,1e+294,1e+295,1e+296,1e+297,1e+298,1e+299,1e+300,
1e+301,1e+302,1e+303,1e+304,1e+305,1e+306,1e+307,1e+308
};
RAPIDJSON_ASSERT(n <= 308);
return n < -308 ? 0.0 : e[n + 308];
}
} // namespace internal
} // namespace rapidjson
#endif // RAPIDJSON_POW10_
#ifndef RAPIDJSON_INTERNAL_STACK_H_
#define RAPIDJSON_INTERNAL_STACK_H_
namespace rapidjson {
namespace internal {
///////////////////////////////////////////////////////////////////////////////
// Stack
//! A type-unsafe stack for storing different types of data.
/*! \tparam Allocator Allocator for allocating stack memory.
*/
template <typename Allocator>
class Stack {
public:
Stack(Allocator* allocator, size_t stack_capacity) : allocator_(allocator), own_allocator_(0), stack_(0), stack_top_(0), stack_end_(0), stack_capacity_(stack_capacity) {
RAPIDJSON_ASSERT(stack_capacity_ > 0);
if (!allocator_)
own_allocator_ = allocator_ = new Allocator();
stack_top_ = stack_ = (char*)allocator_->Malloc(stack_capacity_);
stack_end_ = stack_ + stack_capacity_;
}
~Stack() {
Allocator::Free(stack_);
delete own_allocator_; // Only delete if it is owned by the stack
}
void Clear() { /*stack_top_ = 0;*/ stack_top_ = stack_; }
template<typename T>
T* Push(size_t count = 1) {
// Expand the stack if needed
if (stack_top_ + sizeof(T) * count >= stack_end_) {
size_t new_capacity = stack_capacity_ * 2;
size_t size = GetSize();
size_t new_size = GetSize() + sizeof(T) * count;
if (new_capacity < new_size)
new_capacity = new_size;
stack_ = (char*)allocator_->Realloc(stack_, stack_capacity_, new_capacity);
stack_capacity_ = new_capacity;
stack_top_ = stack_ + size;
stack_end_ = stack_ + stack_capacity_;
}
T* ret = (T*)stack_top_;
stack_top_ += sizeof(T) * count;
return ret;
}
template<typename T>
T* Pop(size_t count) {
RAPIDJSON_ASSERT(GetSize() >= count * sizeof(T));
stack_top_ -= count * sizeof(T);
return (T*)stack_top_;
}
template<typename T>
T* Top() {
RAPIDJSON_ASSERT(GetSize() >= sizeof(T));
return (T*)(stack_top_ - sizeof(T));
}
template<typename T>
T* Bottom() { return (T*)stack_; }
Allocator& GetAllocator() { return *allocator_; }
size_t GetSize() const { return stack_top_ - stack_; }
size_t GetCapacity() const { return stack_capacity_; }
private:
Allocator* allocator_;
Allocator* own_allocator_;
char *stack_;
char *stack_top_;
char *stack_end_;
size_t stack_capacity_;
};
} // namespace internal
} // namespace rapidjson
#endif // RAPIDJSON_STACK_H_
#ifndef RAPIDJSON_INTERNAL_STRFUNC_H_
#define RAPIDJSON_INTERNAL_STRFUNC_H_
namespace rapidjson {
namespace internal {
//! Custom strlen() which works on different character types.
/*! \tparam Ch Character type (e.g. char, wchar_t, short)
\param s Null-terminated input string.
\return Number of characters in the string.
\note This has the same semantics as strlen(), the return value is not number of Unicode codepoints.
*/
template <typename Ch>
inline SizeType StrLen(const Ch* s) {
const Ch* p = s;
while (*p != '\0')
++p;
return SizeType(p - s);
}
} // namespace internal
} // namespace rapidjson
#endif // RAPIDJSON_INTERNAL_STRFUNC_H_
Copyright (C) 2011 Milo Yip
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
\ No newline at end of file
#ifndef RAPIDJSON_PRETTYWRITER_H_
#define RAPIDJSON_PRETTYWRITER_H_
#include "writer.h"
namespace rapidjson {
//! Writer with indentation and spacing.
/*!
\tparam Stream Type of ouptut stream.
\tparam Encoding Encoding of both source strings and output.
\tparam Allocator Type of allocator for allocating memory of stack.
*/
template<typename Stream, typename Encoding = UTF8<>, typename Allocator = MemoryPoolAllocator<> >
class PrettyWriter : public Writer<Stream, Encoding, Allocator> {
public:
typedef Writer<Stream, Encoding, Allocator> Base;
typedef typename Base::Ch Ch;
//! Constructor
/*! \param stream Output stream.
\param allocator User supplied allocator. If it is null, it will create a private one.
\param levelDepth Initial capacity of
*/
PrettyWriter(Stream& stream, int precision = 20, Allocator* allocator = 0, size_t levelDepth = Base::kDefaultLevelDepth) :
Base(stream, precision, allocator, levelDepth), indentChar_(' '), indentCharCount_(4) {}
//! Set custom indentation.
/*! \param indentChar Character for indentation. Must be whitespace character (' ', '\t', '\n', '\r').
\param indentCharCount Number of indent characters for each indentation level.
\note The default indentation is 4 spaces.
*/
PrettyWriter& SetIndent(Ch indentChar, unsigned indentCharCount) {
RAPIDJSON_ASSERT(indentChar == ' ' || indentChar == '\t' || indentChar == '\n' || indentChar == '\r');
indentChar_ = indentChar;
indentCharCount_ = indentCharCount;
return *this;
}
//@name Implementation of Handler.
//@{
PrettyWriter& Null_() { PrettyPrefix(kNull_Type); Base::WriteNull_(); return *this; }
PrettyWriter& Bool_(bool b) { PrettyPrefix(b ? kTrueType : kFalseType); Base::WriteBool_(b); return *this; }
PrettyWriter& Int(int i) { PrettyPrefix(kNumberType); Base::WriteInt(i); return *this; }
PrettyWriter& Uint(unsigned u) { PrettyPrefix(kNumberType); Base::WriteUint(u); return *this; }
PrettyWriter& Int64(int64_t i64) { PrettyPrefix(kNumberType); Base::WriteInt64(i64); return *this; }
PrettyWriter& Uint64(uint64_t u64) { PrettyPrefix(kNumberType); Base::WriteUint64(u64); return *this; }
PrettyWriter& Double(double d) { PrettyPrefix(kNumberType); Base::WriteDouble(d); return *this; }
PrettyWriter& String(const Ch* str, SizeType length, bool copy = false) {
(void)copy;
PrettyPrefix(kStringType);
Base::WriteString(str, length);
return *this;
}
PrettyWriter& StartObject() {
PrettyPrefix(kObjectType);
new (Base::level_stack_.template Push<typename Base::Level>()) typename Base::Level(false);
Base::WriteStartObject();
return *this;
}
PrettyWriter& EndObject(SizeType memberCount = 0) {
(void)memberCount;
RAPIDJSON_ASSERT(Base::level_stack_.GetSize() >= sizeof(typename Base::Level));
RAPIDJSON_ASSERT(!Base::level_stack_.template Top<typename Base::Level>()->inArray);
bool empty = Base::level_stack_.template Pop<typename Base::Level>(1)->valueCount == 0;
if (!empty) {
Base::stream_.Put('\n');
WriteIndent();
}
Base::WriteEndObject();
return *this;
}
PrettyWriter& StartArray() {
PrettyPrefix(kArrayType);
new (Base::level_stack_.template Push<typename Base::Level>()) typename Base::Level(true);
Base::WriteStartArray();
return *this;
}
PrettyWriter& EndArray(SizeType memberCount = 0) {
(void)memberCount;
RAPIDJSON_ASSERT(Base::level_stack_.GetSize() >= sizeof(typename Base::Level));
RAPIDJSON_ASSERT(Base::level_stack_.template Top<typename Base::Level>()->inArray);
bool empty = Base::level_stack_.template Pop<typename Base::Level>(1)->valueCount == 0;
if (!empty) {
Base::stream_.Put('\n');
WriteIndent();
}
Base::WriteEndArray();
return *this;
}
//@}
//! Simpler but slower overload.
PrettyWriter& String(const Ch* str) { return String(str, internal::StrLen(str)); }
protected:
void PrettyPrefix(Type type) {
(void)type;
if (Base::level_stack_.GetSize() != 0) { // this value is not at root
typename Base::Level* level = Base::level_stack_.template Top<typename Base::Level>();
if (level->inArray) {
if (level->valueCount > 0) {
Base::stream_.Put(','); // add comma if it is not the first element in array
Base::stream_.Put('\n');
}
else
Base::stream_.Put('\n');
WriteIndent();
}
else { // in object
if (level->valueCount > 0) {
if (level->valueCount % 2 == 0) {
Base::stream_.Put(',');
Base::stream_.Put('\n');
}
else {
Base::stream_.Put(':');
Base::stream_.Put(' ');
}
}
else
Base::stream_.Put('\n');
if (level->valueCount % 2 == 0)
WriteIndent();
}
if (!level->inArray && level->valueCount % 2 == 0)
RAPIDJSON_ASSERT(type == kStringType); // if it's in object, then even number should be a name
level->valueCount++;
}
else
RAPIDJSON_ASSERT(type == kObjectType || type == kArrayType);
}
void WriteIndent() {
size_t count = (Base::level_stack_.GetSize() / sizeof(typename Base::Level)) * indentCharCount_;
PutN(Base::stream_, indentChar_, count);
}
Ch indentChar_;
unsigned indentCharCount_;
};
} // namespace rapidjson
#endif // RAPIDJSON_RAPIDJSON_H_
#ifndef RAPIDJSON_RAPIDJSON_H_
#define RAPIDJSON_RAPIDJSON_H_
// Copyright (c) 2011-2012 Milo Yip (miloyip@gmail.com)
// Version 0.11
#include <cstdlib> // malloc(), realloc(), free()
#include <cstring> // memcpy()
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_NO_INT64DEFINE
// Here defines int64_t and uint64_t types in global namespace.
// If user have their own definition, can define RAPIDJSON_NO_INT64DEFINE to disable this.
#ifndef RAPIDJSON_NO_INT64DEFINE
#ifdef _MSC_VER
typedef __int64 int64_t;
typedef unsigned __int64 uint64_t;
#else
#include <inttypes.h>
#endif
#endif // RAPIDJSON_NO_INT64TYPEDEF
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_ENDIAN
#define RAPIDJSON_LITTLEENDIAN 0 //!< Little endian machine
#define RAPIDJSON_BIGENDIAN 1 //!< Big endian machine
//! Endianness of the machine.
/*! GCC provided macro for detecting endianness of the target machine. But other
compilers may not have this. User can define RAPIDJSON_ENDIAN to either
RAPIDJSON_LITTLEENDIAN or RAPIDJSON_BIGENDIAN.
*/
#ifndef RAPIDJSON_ENDIAN
#ifdef __BYTE_ORDER__
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
#define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN
#else
#define RAPIDJSON_ENDIAN RAPIDJSON_BIGENDIAN
#endif // __BYTE_ORDER__
#else
#define RAPIDJSON_ENDIAN RAPIDJSON_LITTLEENDIAN // Assumes little endian otherwise.
#endif
#endif // RAPIDJSON_ENDIAN
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_SSE2/RAPIDJSON_SSE42/RAPIDJSON_SIMD
// Enable SSE2 optimization.
//#define RAPIDJSON_SSE2
// Enable SSE4.2 optimization.
//#define RAPIDJSON_SSE42
#if defined(RAPIDJSON_SSE2) || defined(RAPIDJSON_SSE42)
#define RAPIDJSON_SIMD
#endif
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_NO_SIZETYPEDEFINE
#ifndef RAPIDJSON_NO_SIZETYPEDEFINE
namespace rapidjson {
//! Use 32-bit array/string indices even for 64-bit platform, instead of using size_t.
/*! User may override the SizeType by defining RAPIDJSON_NO_SIZETYPEDEFINE.
*/
typedef unsigned SizeType;
} // namespace rapidjson
#endif
///////////////////////////////////////////////////////////////////////////////
// RAPIDJSON_ASSERT
//! Assertion.
/*! By default, rapidjson uses C assert() for assertion.
User can override it by defining RAPIDJSON_ASSERT(x) macro.
*/
#ifndef RAPIDJSON_ASSERT
#include <cassert>
#define RAPIDJSON_ASSERT(x) assert(x)
#endif // RAPIDJSON_ASSERT
///////////////////////////////////////////////////////////////////////////////
// Helpers
#define RAPIDJSON_MULTILINEMACRO_BEGIN do {
#define RAPIDJSON_MULTILINEMACRO_END \
} while((void)0, 0)
namespace rapidjson {
///////////////////////////////////////////////////////////////////////////////
// Allocator
/*! \class rapidjson::Allocator
\brief Concept for allocating, resizing and freeing memory block.
Note that Malloc() and Realloc() are non-static but Free() is static.
So if an allocator need to support Free(), it needs to put its pointer in
the header of memory block.
\code
concept Allocator {
static const bool kNeedFree; //!< Whether this allocator needs to call Free().
// Allocate a memory block.
// \param size of the memory block in bytes.
// \returns pointer to the memory block.
void* Malloc(size_t size);
// Resize a memory block.
// \param originalPtr The pointer to current memory block. Null_ pointer is permitted.
// \param originalSize The current size in bytes. (Design issue: since some allocator may not book-keep this, explicitly pass to it can save memory.)
// \param newSize the new size in bytes.
void* Realloc(void* originalPtr, size_t originalSize, size_t newSize);
// Free a memory block.
// \param pointer to the memory block. Null_ pointer is permitted.
static void Free(void *ptr);
};
\endcode
*/
///////////////////////////////////////////////////////////////////////////////
// CrtAllocator
//! C-runtime library allocator.
/*! This class is just wrapper for standard C library memory routines.
\implements Allocator
*/
class CrtAllocator {
public:
static const bool kNeedFree = true;
void* Malloc(size_t size) { return malloc(size); }
void* Realloc(void* originalPtr, size_t originalSize, size_t newSize) { (void)originalSize; return realloc(originalPtr, newSize); }
static void Free(void *ptr) { free(ptr); }
};
///////////////////////////////////////////////////////////////////////////////
// MemoryPoolAllocator
//! Default memory allocator used by the parser and DOM.
/*! This allocator allocate memory blocks from pre-allocated memory chunks.
It does not free memory blocks. And Realloc() only allocate new memory.
The memory chunks are allocated by BaseAllocator, which is CrtAllocator by default.
User may also supply a buffer as the first chunk.
If the user-buffer is full then additional chunks are allocated by BaseAllocator.
The user-buffer is not deallocated by this allocator.
\tparam BaseAllocator the allocator type for allocating memory chunks. Default is CrtAllocator.
\implements Allocator
*/
template <typename BaseAllocator = CrtAllocator>
class MemoryPoolAllocator {
public:
static const bool kNeedFree = false; //!< Tell users that no need to call Free() with this allocator. (concept Allocator)
//! Constructor with chunkSize.
/*! \param chunkSize The size of memory chunk. The default is kDefaultChunkSize.
\param baseAllocator The allocator for allocating memory chunks.
*/
MemoryPoolAllocator(size_t chunkSize = kDefaultChunkCapacity, BaseAllocator* baseAllocator = 0) :
chunkHead_(0), chunk_capacity_(chunkSize), userBuffer_(0), baseAllocator_(baseAllocator), ownBaseAllocator_(0)
{
if (!baseAllocator_)
ownBaseAllocator_ = baseAllocator_ = new BaseAllocator();
AddChunk(chunk_capacity_);
}
//! Constructor with user-supplied buffer.
/*! The user buffer will be used firstly. When it is full, memory pool allocates new chunk with chunk size.
The user buffer will not be deallocated when this allocator is destructed.
\param buffer User supplied buffer.
\param size Size of the buffer in bytes. It must at least larger than sizeof(ChunkHeader).
\param chunkSize The size of memory chunk. The default is kDefaultChunkSize.
\param baseAllocator The allocator for allocating memory chunks.
*/
MemoryPoolAllocator(char *buffer, size_t size, size_t chunkSize = kDefaultChunkCapacity, BaseAllocator* baseAllocator = 0) :
chunkHead_(0), chunk_capacity_(chunkSize), userBuffer_(buffer), baseAllocator_(baseAllocator), ownBaseAllocator_(0)
{
RAPIDJSON_ASSERT(buffer != 0);
RAPIDJSON_ASSERT(size > sizeof(ChunkHeader));
chunkHead_ = (ChunkHeader*)buffer;
chunkHead_->capacity = size - sizeof(ChunkHeader);
chunkHead_->size = 0;
chunkHead_->next = 0;
}
//! Destructor.
/*! This deallocates all memory chunks, excluding the user-supplied buffer.
*/
~MemoryPoolAllocator() {
Clear();
delete ownBaseAllocator_;
}
//! Deallocates all memory chunks, excluding the user-supplied buffer.
void Clear() {
while(chunkHead_ != 0 && chunkHead_ != (ChunkHeader *)userBuffer_) {
ChunkHeader* next = chunkHead_->next;
baseAllocator_->Free(chunkHead_);
chunkHead_ = next;
}
}
//! Computes the total capacity of allocated memory chunks.
/*! \return total capacity in bytes.
*/
size_t Capacity() {
size_t capacity = 0;
for (ChunkHeader* c = chunkHead_; c != 0; c = c->next)
capacity += c->capacity;
return capacity;
}
//! Computes the memory blocks allocated.
/*! \return total used bytes.
*/
size_t Size() {
size_t size = 0;
for (ChunkHeader* c = chunkHead_; c != 0; c = c->next)
size += c->size;
return size;
}
//! Allocates a memory block. (concept Allocator)
void* Malloc(size_t size) {
size = (size + 3) & ~3; // Force aligning size to 4
if (chunkHead_->size + size > chunkHead_->capacity)
AddChunk(chunk_capacity_ > size ? chunk_capacity_ : size);
char *buffer = (char *)(chunkHead_ + 1) + chunkHead_->size;
RAPIDJSON_ASSERT(((uintptr_t)buffer & 3) == 0); // returned buffer is aligned to 4
chunkHead_->size += size;
return buffer;
}
//! Resizes a memory block (concept Allocator)
void* Realloc(void* originalPtr, size_t originalSize, size_t newSize) {
if (originalPtr == 0)
return Malloc(newSize);
// Do not shrink if new size is smaller than original
if (originalSize >= newSize)
return originalPtr;
// Simply expand it if it is the last allocation and there is sufficient space
if (originalPtr == (char *)(chunkHead_ + 1) + chunkHead_->size - originalSize) {
size_t increment = newSize - originalSize;
increment = (increment + 3) & ~3; // Force aligning size to 4
if (chunkHead_->size + increment <= chunkHead_->capacity) {
chunkHead_->size += increment;
RAPIDJSON_ASSERT(((uintptr_t)originalPtr & 3) == 0); // returned buffer is aligned to 4
return originalPtr;
}
}
// Realloc process: allocate and copy memory, do not free original buffer.
void* newBuffer = Malloc(newSize);
RAPIDJSON_ASSERT(newBuffer != 0); // Do not handle out-of-memory explicitly.
return memcpy(newBuffer, originalPtr, originalSize);
}
//! Frees a memory block (concept Allocator)
static void Free(void *) {} // Do nothing
private:
//! Creates a new chunk.
/*! \param capacity Capacity of the chunk in bytes.
*/
void AddChunk(size_t capacity) {
ChunkHeader* chunk = (ChunkHeader*)baseAllocator_->Malloc(sizeof(ChunkHeader) + capacity);
chunk->capacity = capacity;
chunk->size = 0;
chunk->next = chunkHead_;
chunkHead_ = chunk;
}
static const int kDefaultChunkCapacity = 64 * 1024; //!< Default chunk capacity.
//! Chunk header for perpending to each chunk.
/*! Chunks are stored as a singly linked list.
*/
struct ChunkHeader {
size_t capacity; //!< Capacity of the chunk in bytes (excluding the header itself).
size_t size; //!< Current size of allocated memory in bytes.
ChunkHeader *next; //!< Next chunk in the linked list.
};
ChunkHeader *chunkHead_; //!< Head of the chunk linked-list. Only the head chunk serves allocation.
size_t chunk_capacity_; //!< The minimum capacity of chunk when they are allocated.
char *userBuffer_; //!< User supplied buffer.
BaseAllocator* baseAllocator_; //!< base allocator for allocating memory chunks.
BaseAllocator* ownBaseAllocator_; //!< base allocator created by this object.
};
///////////////////////////////////////////////////////////////////////////////
// Encoding
/*! \class rapidjson::Encoding
\brief Concept for encoding of Unicode characters.
\code
concept Encoding {
typename Ch; //! Type of character.
//! \brief Encode a Unicode codepoint to a buffer.
//! \param buffer pointer to destination buffer to store the result. It should have sufficient size of encoding one character.
//! \param codepoint An unicode codepoint, ranging from 0x0 to 0x10FFFF inclusively.
//! \returns the pointer to the next character after the encoded data.
static Ch* Encode(Ch *buffer, unsigned codepoint);
};
\endcode
*/
///////////////////////////////////////////////////////////////////////////////
// UTF8
//! UTF-8 encoding.
/*! http://en.wikipedia.org/wiki/UTF-8
\tparam CharType Type for storing 8-bit UTF-8 data. Default is char.
\implements Encoding
*/
template<typename CharType = char>
struct UTF8 {
typedef CharType Ch;
static Ch* Encode(Ch *buffer, unsigned codepoint) {
if (codepoint <= 0x7F)
*buffer++ = codepoint & 0xFF;
else if (codepoint <= 0x7FF) {
*buffer++ = 0xC0 | ((codepoint >> 6) & 0xFF);
*buffer++ = 0x80 | ((codepoint & 0x3F));
}
else if (codepoint <= 0xFFFF) {
*buffer++ = 0xE0 | ((codepoint >> 12) & 0xFF);
*buffer++ = 0x80 | ((codepoint >> 6) & 0x3F);
*buffer++ = 0x80 | (codepoint & 0x3F);
}
else {
RAPIDJSON_ASSERT(codepoint <= 0x10FFFF);
*buffer++ = 0xF0 | ((codepoint >> 18) & 0xFF);
*buffer++ = 0x80 | ((codepoint >> 12) & 0x3F);
*buffer++ = 0x80 | ((codepoint >> 6) & 0x3F);
*buffer++ = 0x80 | (codepoint & 0x3F);
}
return buffer;
}
};
///////////////////////////////////////////////////////////////////////////////
// UTF16
//! UTF-16 encoding.
/*! http://en.wikipedia.org/wiki/UTF-16
\tparam CharType Type for storing 16-bit UTF-16 data. Default is wchar_t. C++11 may use char16_t instead.
\implements Encoding
*/
template<typename CharType = wchar_t>
struct UTF16 {
typedef CharType Ch;
static Ch* Encode(Ch* buffer, unsigned codepoint) {
if (codepoint <= 0xFFFF) {
RAPIDJSON_ASSERT(codepoint < 0xD800 || codepoint > 0xDFFF); // Code point itself cannot be surrogate pair
*buffer++ = static_cast<Ch>(codepoint);
}
else {
RAPIDJSON_ASSERT(codepoint <= 0x10FFFF);
unsigned v = codepoint - 0x10000;
*buffer++ = static_cast<Ch>((v >> 10) + 0xD800);
*buffer++ = (v & 0x3FF) + 0xDC00;
}
return buffer;
}
};
///////////////////////////////////////////////////////////////////////////////
// UTF32
//! UTF-32 encoding.
/*! http://en.wikipedia.org/wiki/UTF-32
\tparam Ch Type for storing 32-bit UTF-32 data. Default is unsigned. C++11 may use char32_t instead.
\implements Encoding
*/
template<typename CharType = unsigned>
struct UTF32 {
typedef CharType Ch;
static Ch *Encode(Ch* buffer, unsigned codepoint) {
RAPIDJSON_ASSERT(codepoint <= 0x10FFFF);
*buffer++ = codepoint;
return buffer;
}
};
///////////////////////////////////////////////////////////////////////////////
// Stream
/*! \class rapidjson::Stream
\brief Concept for reading and writing characters.
For read-only stream, no need to implement PutBegin(), Put() and PutEnd().
For write-only stream, only need to implement Put().
\code
concept Stream {
typename Ch; //!< Character type of the stream.
//! Read the current character from stream without moving the read cursor.
Ch Peek() const;
//! Read the current character from stream and moving the read cursor to next character.
Ch Take();
//! Get the current read cursor.
//! \return Number of characters read from start.
size_t Tell();
//! Begin writing operation at the current read pointer.
//! \return The begin writer pointer.
Ch* PutBegin();
//! Write a character.
void Put(Ch c);
//! End the writing operation.
//! \param begin The begin write pointer returned by PutBegin().
//! \return Number of characters written.
size_t PutEnd(Ch* begin);
}
\endcode
*/
//! Put N copies of a character to a stream.
template<typename Stream, typename Ch>
inline void PutN(Stream& stream, Ch c, size_t n) {
for (size_t i = 0; i < n; i++)
stream.Put(c);
}
///////////////////////////////////////////////////////////////////////////////
// StringStream
//! Read-only string stream.
/*! \implements Stream
*/
template <typename Encoding>
struct GenericStringStream {
typedef typename Encoding::Ch Ch;
GenericStringStream(const Ch *src) : src_(src), head_(src) {}
Ch Peek() const { return *src_; }
Ch Take() { return *src_++; }
size_t Tell() const { return src_ - head_; }
Ch* PutBegin() { RAPIDJSON_ASSERT(false); return 0; }
void Put(Ch) { RAPIDJSON_ASSERT(false); }
size_t PutEnd(Ch*) { RAPIDJSON_ASSERT(false); return 0; }
const Ch* src_; //!< Current read position.
const Ch* head_; //!< Original head of the string.
};
typedef GenericStringStream<UTF8<> > StringStream;
///////////////////////////////////////////////////////////////////////////////
// InsituStringStream
//! A read-write string stream.
/*! This string stream is particularly designed for in-situ parsing.
\implements Stream
*/
template <typename Encoding>
struct GenericInsituStringStream {
typedef typename Encoding::Ch Ch;
GenericInsituStringStream(Ch *src) : src_(src), dst_(0), head_(src) {}
// Read
Ch Peek() { return *src_; }
Ch Take() { return *src_++; }
size_t Tell() { return src_ - head_; }
// Write
Ch* PutBegin() { return dst_ = src_; }
void Put(Ch c) { RAPIDJSON_ASSERT(dst_ != 0); *dst_++ = c; }
size_t PutEnd(Ch* begin) { return dst_ - begin; }
Ch* src_;
Ch* dst_;
Ch* head_;
};
typedef GenericInsituStringStream<UTF8<> > InsituStringStream;
///////////////////////////////////////////////////////////////////////////////
// Type
//! Type of JSON value
enum Type {
kNull_Type = 0, //!< null
kFalseType = 1, //!< false
kTrueType = 2, //!< true
kObjectType = 3, //!< object
kArrayType = 4, //!< array
kStringType = 5, //!< string
kNumberType = 6, //!< number
};
} // namespace rapidjson
#endif // RAPIDJSON_RAPIDJSON_H_
#ifndef RAPIDJSON_READER_H_
#define RAPIDJSON_READER_H_
// Copyright (c) 2011 Milo Yip (miloyip@gmail.com)
// Version 0.1
#include "rapidjson.h"
#include "internal/pow10.h"
#include "internal/stack.h"
#include <csetjmp>
// All part of denormalized parsing
#include <limits> // for numeric_limits
#include <cmath> // for fpclassify
#include <sstream>
#ifdef RAPIDJSON_SSE42
#include <nmmintrin.h>
#elif defined(RAPIDJSON_SSE2)
#include <emmintrin.h>
#endif
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#pragma warning(disable : 4702) // uncreachable code
#endif
#ifndef RAPIDJSON_PARSE_ERROR
#define RAPIDJSON_PARSE_ERROR(msg, offset) \
RAPIDJSON_MULTILINEMACRO_BEGIN \
parseError_ = msg; \
errorOffset_ = offset; \
longjmp(jmpbuf_, 1); \
RAPIDJSON_MULTILINEMACRO_END
#endif
namespace rapidjson {
///////////////////////////////////////////////////////////////////////////////
// ParseFlag
//! Combination of parseFlags
enum ParseFlag {
kParseDefaultFlags = 0, //!< Default parse flags. Non-destructive parsing. Text strings are decoded into allocated buffer.
kParseInsituFlag = 1 //!< In-situ(destructive) parsing.
};
///////////////////////////////////////////////////////////////////////////////
// Handler
/*! \class rapidjson::Handler
\brief Concept for receiving events from GenericReader upon parsing.
\code
concept Handler {
typename Ch;
void Null_();
void Bool_(bool b);
void Int(int i);
void Uint(unsigned i);
void Int64(int64_t i);
void Uint64(uint64_t i);
void Double(double d);
void String(const Ch* str, SizeType length, bool copy);
void StartObject();
void EndObject(SizeType memberCount);
void StartArray();
void EndArray(SizeType elementCount);
};
\endcode
*/
///////////////////////////////////////////////////////////////////////////////
// BaseReaderHandler
//! Default implementation of Handler.
/*! This can be used as base class of any reader handler.
\implements Handler
*/
template<typename Encoding = UTF8<> >
struct BaseReaderHandler {
typedef typename Encoding::Ch Ch;
void Default() {}
void Null_() { Default(); }
void Bool_(bool) { Default(); }
void Int(int) { Default(); }
void Uint(unsigned) { Default(); }
void Int64(int64_t) { Default(); }
void Uint64(uint64_t) { Default(); }
void Double(double) { Default(); }
void String(const Ch*, SizeType, bool) { Default(); }
void StartObject() { Default(); }
void EndObject(SizeType) { Default(); }
void StartArray() { Default(); }
void EndArray(SizeType) { Default(); }
};
///////////////////////////////////////////////////////////////////////////////
// SkipWhitespace
//! Skip the JSON white spaces in a stream.
/*! \param stream A input stream for skipping white spaces.
\note This function has SSE2/SSE4.2 specialization.
*/
template<typename Stream>
void SkipWhitespace(Stream& stream) {
Stream s = stream; // Use a local copy for optimization
while (s.Peek() == ' ' || s.Peek() == '\n' || s.Peek() == '\r' || s.Peek() == '\t')
s.Take();
stream = s;
}
#ifdef RAPIDJSON_SSE42
//! Skip whitespace with SSE 4.2 pcmpistrm instruction, testing 16 8-byte characters at once.
inline const char *SkipWhitespace_SIMD(const char* p) {
static const char whitespace[16] = " \n\r\t";
__m128i w = _mm_loadu_si128((const __m128i *)&whitespace[0]);
for (;;) {
__m128i s = _mm_loadu_si128((const __m128i *)p);
unsigned r = _mm_cvtsi128_si32(_mm_cmpistrm(w, s, _SIDD_UBYTE_OPS | _SIDD_CMP_EQUAL_ANY | _SIDD_BIT_MASK | _SIDD_NEGATIVE_POLARITY));
if (r == 0) // all 16 characters are whitespace
p += 16;
else { // some of characters may be non-whitespace
#ifdef _MSC_VER // Find the index of first non-whitespace
unsigned long offset;
if (_BitScanForward(&offset, r))
return p + offset;
#else
if (r != 0)
return p + __builtin_ffs(r) - 1;
#endif
}
}
}
#elif defined(RAPIDJSON_SSE2)
//! Skip whitespace with SSE2 instructions, testing 16 8-byte characters at once.
inline const char *SkipWhitespace_SIMD(const char* p) {
static const char whitespaces[4][17] = {
" ",
"\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n\n",
"\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r\r",
"\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"};
__m128i w0 = _mm_loadu_si128((const __m128i *)&whitespaces[0][0]);
__m128i w1 = _mm_loadu_si128((const __m128i *)&whitespaces[1][0]);
__m128i w2 = _mm_loadu_si128((const __m128i *)&whitespaces[2][0]);
__m128i w3 = _mm_loadu_si128((const __m128i *)&whitespaces[3][0]);
for (;;) {
__m128i s = _mm_loadu_si128((const __m128i *)p);
__m128i x = _mm_cmpeq_epi8(s, w0);
x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w1));
x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w2));
x = _mm_or_si128(x, _mm_cmpeq_epi8(s, w3));
unsigned short r = ~_mm_movemask_epi8(x);
if (r == 0) // all 16 characters are whitespace
p += 16;
else { // some of characters may be non-whitespace
#ifdef _MSC_VER // Find the index of first non-whitespace
unsigned long offset;
if (_BitScanForward(&offset, r))
return p + offset;
#else
if (r != 0)
return p + __builtin_ffs(r) - 1;
#endif
}
}
}
#endif // RAPIDJSON_SSE2
#ifdef RAPIDJSON_SIMD
//! Template function specialization for InsituStringStream
template<> inline void SkipWhitespace(InsituStringStream& stream) {
stream.src_ = const_cast<char*>(SkipWhitespace_SIMD(stream.src_));
}
//! Template function specialization for StringStream
template<> inline void SkipWhitespace(StringStream& stream) {
stream.src_ = SkipWhitespace_SIMD(stream.src_);
}
#endif // RAPIDJSON_SIMD
///////////////////////////////////////////////////////////////////////////////
// GenericReader
//! SAX-style JSON parser. Use Reader for UTF8 encoding and default allocator.
/*! GenericReader parses JSON text from a stream, and send events synchronously to an
object implementing Handler concept.
It needs to allocate a stack for storing a single decoded string during
non-destructive parsing.
For in-situ parsing, the decoded string is directly written to the source
text string, no temporary buffer is required.
A GenericReader object can be reused for parsing multiple JSON text.
\tparam Encoding Encoding of both the stream and the parse output.
\tparam Allocator Allocator type for stack.
*/
template <typename Encoding, typename Allocator = MemoryPoolAllocator<> >
class GenericReader {
public:
typedef typename Encoding::Ch Ch;
//! Constructor.
/*! \param allocator Optional allocator for allocating stack memory. (Only use for non-destructive parsing)
\param stackCapacity stack capacity in bytes for storing a single decoded string. (Only use for non-destructive parsing)
*/
GenericReader(Allocator* allocator = 0, size_t stackCapacity = kDefaultStackCapacity) : stack_(allocator, stackCapacity), parseError_(0), errorOffset_(0) {}
//! Parse JSON text.
/*! \tparam parseFlags Combination of ParseFlag.
\tparam Stream Type of input stream.
\tparam Handler Type of handler which must implement Handler concept.
\param stream Input stream to be parsed.
\param handler The handler to receive events.
\return Whether the parsing is successful.
*/
template <unsigned parseFlags, typename Stream, typename Handler>
bool Parse(Stream& stream, Handler& handler) {
parseError_ = 0;
errorOffset_ = 0;
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4611) // interaction between '_setjmp' and C++ object destruction is non-portable
#endif
if (setjmp(jmpbuf_)) {
#ifdef _MSC_VER
#pragma warning(pop)
#endif
stack_.Clear();
return false;
}
SkipWhitespace(stream);
if (stream.Peek() == '\0')
RAPIDJSON_PARSE_ERROR("Text only contains white space(s)", stream.Tell());
else {
switch (stream.Peek()) {
case '{': ParseObject<parseFlags>(stream, handler); break;
case '[': ParseArray<parseFlags>(stream, handler); break;
default: RAPIDJSON_PARSE_ERROR("Expect either an object or array at root", stream.Tell());
}
SkipWhitespace(stream);
if (stream.Peek() != '\0' && stream.Peek() != static_cast<Ch>(std::char_traits<Ch>::eof()))
RAPIDJSON_PARSE_ERROR("Nothing should follow the root object or array.", stream.Tell());
}
return true;
}
bool HasParseError() const { return parseError_ != 0; }
const char* GetParseError() const { return parseError_; }
size_t GetErrorOffset() const { return errorOffset_; }
private:
// Parse object: { string : value, ... }
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseObject(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == '{');
stream.Take(); // Skip '{'
handler.StartObject();
SkipWhitespace(stream);
if (stream.Peek() == '}') {
stream.Take();
handler.EndObject(0); // empty object
return;
}
for (SizeType memberCount = 0;;) {
if (stream.Peek() != '"') {
RAPIDJSON_PARSE_ERROR("Name of an object member must be a string", stream.Tell());
break;
}
ParseString<parseFlags>(stream, handler);
SkipWhitespace(stream);
if (stream.Take() != ':') {
RAPIDJSON_PARSE_ERROR("There must be a colon after the name of object member", stream.Tell());
break;
}
SkipWhitespace(stream);
ParseValue<parseFlags>(stream, handler);
SkipWhitespace(stream);
++memberCount;
switch(stream.Take()) {
case ',': SkipWhitespace(stream); break;
case '}': handler.EndObject(memberCount); return;
default: RAPIDJSON_PARSE_ERROR("Must be a comma or '}' after an object member", stream.Tell());
}
}
}
// Parse array: [ value, ... ]
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseArray(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == '[');
stream.Take(); // Skip '['
handler.StartArray();
SkipWhitespace(stream);
if (stream.Peek() == ']') {
stream.Take();
handler.EndArray(0); // empty array
return;
}
for (SizeType elementCount = 0;;) {
ParseValue<parseFlags>(stream, handler);
++elementCount;
SkipWhitespace(stream);
switch (stream.Take()) {
case ',': SkipWhitespace(stream); break;
case ']': handler.EndArray(elementCount); return;
default: RAPIDJSON_PARSE_ERROR("Must be a comma or ']' after an array element.", stream.Tell());
}
}
}
// Parses for null or NaN
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseNaNNull_(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 'n');
stream.Take();
if( stream.Peek() == 'a' && stream.Take() == 'a' && stream.Take() == 'n' )
handler.Double( std::numeric_limits<double>::quiet_NaN() );
else if (stream.Take() == 'u' && stream.Take() == 'l' && stream.Take() == 'l')
handler.Null_();
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell() - 1);
}
// Parses for infinity
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseInfinity(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 'i');
stream.Take();
if (stream.Take() == 'n' && stream.Take() == 'f')
handler.Double( std::numeric_limits<double>::infinity() );
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell() - 1);
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseTrue(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 't');
stream.Take();
if (stream.Take() == 'r' && stream.Take() == 'u' && stream.Take() == 'e')
handler.Bool_(true);
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell());
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseFalse(Stream& stream, Handler& handler) {
RAPIDJSON_ASSERT(stream.Peek() == 'f');
stream.Take();
if (stream.Take() == 'a' && stream.Take() == 'l' && stream.Take() == 's' && stream.Take() == 'e')
handler.Bool_(false);
else
RAPIDJSON_PARSE_ERROR("Invalid value", stream.Tell() - 1);
}
// Helper function to parse four hexidecimal digits in \uXXXX in ParseString().
template<typename Stream>
unsigned ParseHex4(Stream& stream) {
Stream s = stream; // Use a local copy for optimization
unsigned codepoint = 0;
for (int i = 0; i < 4; i++) {
Ch c = s.Take();
codepoint <<= 4;
codepoint += c;
if (c >= '0' && c <= '9')
codepoint -= '0';
else if (c >= 'A' && c <= 'F')
codepoint -= 'A' - 10;
else if (c >= 'a' && c <= 'f')
codepoint -= 'a' - 10;
else
RAPIDJSON_PARSE_ERROR("Incorrect hex digit after \\u escape", s.Tell() - 1);
}
stream = s; // Restore stream
return codepoint;
}
// cereal Temporary until constexpr support is added in RTM
#ifdef _MSC_VER
template <class Ch>
bool characterOk( Ch c )
{
return c < 256;
}
template <>
bool characterOk<char>( char )
{
return true;
}
#else
// As part of a fix for GCC 4.7
template <class T>
static constexpr int to_int( T t ){ return t; }
template<class Ch>
typename std::enable_if < to_int(std::numeric_limits<Ch>::max()) < to_int(256), bool>::type
characterOk( Ch )
{
return true;
}
template<class Ch>
typename std::enable_if< to_int(std::numeric_limits<Ch>::max()) >= to_int(256), bool>::type
characterOk(Ch c)
{ return c < 256; }
#endif
// Parse string, handling the prefix and suffix double quotes and escaping.
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseString(Stream& stream, Handler& handler) {
#define Z16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
static const Ch escape[256] = {
Z16, Z16, 0, 0,'\"', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'/',
Z16, Z16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'\\', 0, 0, 0,
0, 0,'\b', 0, 0, 0,'\f', 0, 0, 0, 0, 0, 0, 0,'\n', 0,
0, 0,'\r', 0,'\t', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16
};
#undef Z16
Stream s = stream; // Use a local copy for optimization
RAPIDJSON_ASSERT(s.Peek() == '\"');
s.Take(); // Skip '\"'
Ch *head;
SizeType len;
if (parseFlags & kParseInsituFlag)
head = s.PutBegin();
else
len = 0;
#define RAPIDJSON_PUT(x) \
do { \
if (parseFlags & kParseInsituFlag) \
s.Put(x); \
else { \
*stack_.template Push<Ch>() = x; \
++len; \
} \
} while(false)
for (;;) {
Ch c = s.Take();
if (c == '\\') { // Escape
Ch e = s.Take();
if ((sizeof(Ch) == 1 || characterOk(e)) && escape[(unsigned char)e])
RAPIDJSON_PUT(escape[(unsigned char)e]);
else if (e == 'u') { // Unicode
unsigned codepoint = ParseHex4(s);
if (codepoint >= 0xD800 && codepoint <= 0xDBFF) { // Handle UTF-16 surrogate pair
if (s.Take() != '\\' || s.Take() != 'u') {
RAPIDJSON_PARSE_ERROR("Missing the second \\u in surrogate pair", s.Tell() - 2);
return;
}
unsigned codepoint2 = ParseHex4(s);
if (codepoint2 < 0xDC00 || codepoint2 > 0xDFFF) {
RAPIDJSON_PARSE_ERROR("The second \\u in surrogate pair is invalid", s.Tell() - 2);
return;
}
codepoint = (((codepoint - 0xD800) << 10) | (codepoint2 - 0xDC00)) + 0x10000;
}
Ch buffer[4];
SizeType count = SizeType(Encoding::Encode(buffer, codepoint) - &buffer[0]);
if (parseFlags & kParseInsituFlag)
for (SizeType i = 0; i < count; i++)
s.Put(buffer[i]);
else {
memcpy(stack_.template Push<Ch>(count), buffer, count * sizeof(Ch));
len += count;
}
}
else {
RAPIDJSON_PARSE_ERROR("Unknown escape character", stream.Tell() - 1);
return;
}
}
else if (c == '"') { // Closing double quote
if (parseFlags & kParseInsituFlag) {
size_t length = s.PutEnd(head);
RAPIDJSON_ASSERT(length <= 0xFFFFFFFF);
RAPIDJSON_PUT('\0'); // null-terminate the string
handler.String(head, SizeType(length), false);
}
else {
RAPIDJSON_PUT('\0');
handler.String(stack_.template Pop<Ch>(len), len - 1, true);
}
stream = s; // restore stream
return;
}
else if (c == '\0') {
RAPIDJSON_PARSE_ERROR("lacks ending quotation before the end of string", stream.Tell() - 1);
return;
}
else if ((unsigned)c < 0x20) { // RFC 4627: unescaped = %x20-21 / %x23-5B / %x5D-10FFFF
RAPIDJSON_PARSE_ERROR("Incorrect unescaped character in string", stream.Tell() - 1);
return;
}
else
RAPIDJSON_PUT(c); // Normal character, just copy
}
#undef RAPIDJSON_PUT
}
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseNumber(Stream& stream, Handler& handler) {
Stream s = stream; // Local copy for optimization
// Parse minus
bool minus = false;
if (s.Peek() == '-') {
minus = true;
s.Take();
}
// Parse int: zero / ( digit1-9 *DIGIT )
unsigned i;
bool try64bit = false;
if (s.Peek() == '0') {
i = 0;
s.Take();
}
else if (s.Peek() >= '1' && s.Peek() <= '9') {
i = s.Take() - '0';
if (minus)
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i >= 214748364) { // 2^31 = 2147483648
if (i != 214748364 || s.Peek() > '8') {
try64bit = true;
break;
}
}
i = i * 10 + (s.Take() - '0');
}
else
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i >= 429496729) { // 2^32 - 1 = 4294967295
if (i != 429496729 || s.Peek() > '5') {
try64bit = true;
break;
}
}
i = i * 10 + (s.Take() - '0');
}
}
else {
RAPIDJSON_PARSE_ERROR("Expect a value here.", stream.Tell());
return;
}
// Parse 64bit int
uint64_t i64 = 0;
bool useDouble = false;
if (try64bit) {
i64 = i;
if (minus)
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= 922337203685477580uLL) // 2^63 = 9223372036854775808
if (i64 != 922337203685477580uLL || s.Peek() > '8') {
useDouble = true;
break;
}
i64 = i64 * 10 + (s.Take() - '0');
}
else
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (i64 >= 1844674407370955161uLL) // 2^64 - 1 = 18446744073709551615
if (i64 != 1844674407370955161uLL || s.Peek() > '5') {
useDouble = true;
break;
}
i64 = i64 * 10 + (s.Take() - '0');
}
}
// Force double for big integer
double d = 0.0;
if (useDouble) {
d = (double)i64;
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (d >= 1E307) {
RAPIDJSON_PARSE_ERROR("Number too big to store in double", stream.Tell());
return;
}
d = d * 10 + (s.Take() - '0');
}
}
// Parse frac = decimal-point 1*DIGIT
int expFrac = 0;
if (s.Peek() == '.') {
if (!useDouble) {
d = try64bit ? (double)i64 : (double)i;
useDouble = true;
}
s.Take();
if (s.Peek() >= '0' && s.Peek() <= '9') {
d = d * 10 + (s.Take() - '0');
--expFrac;
}
else {
RAPIDJSON_PARSE_ERROR("At least one digit in fraction part", stream.Tell());
return;
}
while (s.Peek() >= '0' && s.Peek() <= '9') {
if (expFrac > -20) {
d = d * 10 + (s.Peek() - '0');
--expFrac;
}
s.Take();
}
}
// Parse exp = e [ minus / plus ] 1*DIGIT
int exp = 0;
if (s.Peek() == 'e' || s.Peek() == 'E') {
if (!useDouble) {
d = try64bit ? (double)i64 : (double)i;
useDouble = true;
}
s.Take();
bool expMinus = false;
if (s.Peek() == '+')
s.Take();
else if (s.Peek() == '-') {
s.Take();
expMinus = true;
}
if (s.Peek() >= '0' && s.Peek() <= '9') {
exp = s.Take() - '0';
while (s.Peek() >= '0' && s.Peek() <= '9') {
exp = exp * 10 + (s.Take() - '0');
if (exp > 308) {
// Attempt denormalized construction
std::stringstream ss;
ss.precision( std::numeric_limits<double>::max_digits10 );
ss << d * internal::Pow10(expFrac) << 'e' << (expMinus ? '-' : '+') << exp;
double dd;
ss >> dd;
if( std::fpclassify( dd ) == FP_SUBNORMAL )
handler.Double( dd );
else
RAPIDJSON_PARSE_ERROR("Number too big to store in double", stream.Tell());
return;
}
}
}
else {
RAPIDJSON_PARSE_ERROR("At least one digit in exponent", s.Tell());
return;
}
if (expMinus)
exp = -exp;
}
// Finish parsing, call event according to the type of number.
if (useDouble) {
d *= internal::Pow10(exp + expFrac);
handler.Double(minus ? -d : d);
}
else {
if (try64bit) {
if (minus)
handler.Int64(-(int64_t)i64);
else
handler.Uint64(i64);
}
else {
if (minus)
handler.Int(-(int)i);
else
handler.Uint(i);
}
}
stream = s; // restore stream
}
// Parse any JSON value
template<unsigned parseFlags, typename Stream, typename Handler>
void ParseValue(Stream& stream, Handler& handler) {
switch (stream.Peek()) {
case 'n': ParseNaNNull_ <parseFlags>(stream, handler); break;
case 'i': ParseInfinity <parseFlags>(stream, handler); break;
case 't': ParseTrue <parseFlags>(stream, handler); break;
case 'f': ParseFalse <parseFlags>(stream, handler); break;
case '"': ParseString <parseFlags>(stream, handler); break;
case '{': ParseObject <parseFlags>(stream, handler); break;
case '[': ParseArray <parseFlags>(stream, handler); break;
default : ParseNumber <parseFlags>(stream, handler);
}
}
static const size_t kDefaultStackCapacity = 256; //!< Default stack capacity in bytes for storing a single decoded string.
internal::Stack<Allocator> stack_; //!< A stack for storing decoded string temporarily during non-destructive parsing.
jmp_buf jmpbuf_; //!< setjmp buffer for fast exit from nested parsing function calls.
const char* parseError_;
size_t errorOffset_;
}; // class GenericReader
//! Reader with UTF8 encoding and default allocator.
typedef GenericReader<UTF8<> > Reader;
} // namespace rapidjson
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_READER_H_
#ifndef RAPIDJSON_STRINGBUFFER_H_
#define RAPIDJSON_STRINGBUFFER_H_
#include "rapidjson.h"
#include "internal/stack.h"
namespace rapidjson {
//! Represents an in-memory output stream.
/*!
\tparam Encoding Encoding of the stream.
\tparam Allocator type for allocating memory buffer.
\implements Stream
*/
template <typename Encoding, typename Allocator = CrtAllocator>
struct GenericStringBuffer {
typedef typename Encoding::Ch Ch;
GenericStringBuffer(Allocator* allocator = 0, size_t capacity = kDefaultCapacity) : stack_(allocator, capacity) {}
void Put(Ch c) { *stack_.template Push<Ch>() = c; }
void Clear() { stack_.Clear(); }
const char* GetString() const {
// Push and pop a null terminator. This is safe.
*stack_.template Push<Ch>() = '\0';
stack_.template Pop<Ch>(1);
return stack_.template Bottom<Ch>();
}
size_t Size() const { return stack_.GetSize(); }
static const size_t kDefaultCapacity = 256;
mutable internal::Stack<Allocator> stack_;
};
typedef GenericStringBuffer<UTF8<> > StringBuffer;
//! Implement specialized version of PutN() with memset() for better performance.
template<>
inline void PutN(GenericStringBuffer<UTF8<> >& stream, char c, size_t n) {
memset(stream.stack_.Push<char>(n), c, n * sizeof(c));
}
} // namespace rapidjson
#endif // RAPIDJSON_STRINGBUFFER_H_
#ifndef RAPIDJSON_WRITER_H_
#define RAPIDJSON_WRITER_H_
#include "rapidjson.h"
#include "internal/stack.h"
#include "internal/strfunc.h"
#include <cstdio> // snprintf() or _sprintf_s()
#include <new> // placement new
#include <limits>
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4127) // conditional expression is constant
#endif
namespace rapidjson {
//! JSON writer
/*! Writer implements the concept Handler.
It generates JSON text by events to an output stream.
User may programmatically calls the functions of a writer to generate JSON text.
On the other side, a writer can also be passed to objects that generates events,
for example Reader::Parse() and Document::Accept().
\tparam Stream Type of ouptut stream.
\tparam Encoding Encoding of both source strings and output.
\implements Handler
*/
template<typename Stream, typename Encoding = UTF8<>, typename Allocator = MemoryPoolAllocator<> >
class Writer {
public:
typedef typename Encoding::Ch Ch;
Writer(Stream& stream, int precision = 20, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) :
stream_(stream), level_stack_(allocator, levelDepth * sizeof(Level))
{
#if _MSC_VER
(void) sprintf_s(double_format, sizeof(double_format), "%%0.%dg", precision);
(void) sprintf_s( long_double_format, sizeof( long_double_format ), "%%0.%dLg", precision );
#else
(void) snprintf(double_format, sizeof(double_format), "%%0.%dg", precision);
(void) snprintf( long_double_format, sizeof( long_double_format ), "%%0.%dLg", precision );
#endif
}
protected:
char double_format[32];
char long_double_format[32];
public:
//@name Implementation of Handler
//@{
Writer& Null_() { Prefix(kNull_Type); WriteNull_(); return *this; }
Writer& Bool_(bool b) { Prefix(b ? kTrueType : kFalseType); WriteBool_(b); return *this; }
Writer& Int(int i) { Prefix(kNumberType); WriteInt(i); return *this; }
Writer& Uint(unsigned u) { Prefix(kNumberType); WriteUint(u); return *this; }
Writer& Int64(int64_t i64) { Prefix(kNumberType); WriteInt64(i64); return *this; }
Writer& Uint64(uint64_t u64) { Prefix(kNumberType); WriteUint64(u64); return *this; }
Writer& Double(double d) { Prefix(kNumberType); WriteDouble(d); return *this; }
Writer& LongDouble(long double d) { Prefix(kNumberType); WriteLongDouble(d); return *this; }
Writer& LongLong(long long d) { Prefix(kNumberType); WriteLongLong(d); return *this; }
Writer& ULongLong(unsigned long long d) { Prefix(kNumberType); WriteULongLong(d); return *this; }
Writer& String(const Ch* str, SizeType length, bool copy = false) {
(void)copy;
Prefix(kStringType);
WriteString(str, length);
return *this;
}
Writer& StartObject() {
Prefix(kObjectType);
new (level_stack_.template Push<Level>()) Level(false);
WriteStartObject();
return *this;
}
Writer& EndObject(SizeType memberCount = 0) {
(void)memberCount;
RAPIDJSON_ASSERT(level_stack_.GetSize() >= sizeof(Level));
RAPIDJSON_ASSERT(!level_stack_.template Top<Level>()->inArray);
level_stack_.template Pop<Level>(1);
WriteEndObject();
return *this;
}
Writer& StartArray() {
Prefix(kArrayType);
new (level_stack_.template Push<Level>()) Level(true);
WriteStartArray();
return *this;
}
Writer& EndArray(SizeType elementCount = 0) {
(void)elementCount;
RAPIDJSON_ASSERT(level_stack_.GetSize() >= sizeof(Level));
RAPIDJSON_ASSERT(level_stack_.template Top<Level>()->inArray);
level_stack_.template Pop<Level>(1);
WriteEndArray();
return *this;
}
//@}
//! Simpler but slower overload.
Writer& String(const Ch* str) { return String(str, internal::StrLen(str)); }
protected:
//! Information for each nested level
struct Level {
Level(bool inArray_) : inArray(inArray_), valueCount(0) {}
bool inArray; //!< true if in array, otherwise in object
size_t valueCount; //!< number of values in this level
};
static const size_t kDefaultLevelDepth = 32;
void WriteNull_() {
stream_.Put('n'); stream_.Put('u'); stream_.Put('l'); stream_.Put('l');
}
void WriteBool_(bool b) {
if (b) {
stream_.Put('t'); stream_.Put('r'); stream_.Put('u'); stream_.Put('e');
}
else {
stream_.Put('f'); stream_.Put('a'); stream_.Put('l'); stream_.Put('s'); stream_.Put('e');
}
}
void WriteInt(int i) {
if (i < 0) {
stream_.Put('-');
i = -i;
}
WriteUint((unsigned)i);
}
void WriteUint(unsigned u) {
char buffer[10];
char *p = buffer;
do {
*p++ = (u % 10) + '0';
u /= 10;
} while (u > 0);
do {
--p;
stream_.Put(*p);
} while (p != buffer);
}
void WriteInt64(int64_t i64) {
if (i64 < 0) {
stream_.Put('-');
i64 = -i64;
}
WriteUint64((uint64_t)i64);
}
void WriteUint64(uint64_t u64) {
char buffer[20];
char *p = buffer;
do {
*p++ = char(u64 % 10) + '0';
u64 /= 10;
} while (u64 > 0);
do {
--p;
stream_.Put(*p);
} while (p != buffer);
}
// cereal Temporary until constexpr support is added in RTM
#ifdef _MSC_VER
template <class Ch>
bool characterOk( Ch c )
{
return c < 256;
}
template <>
bool characterOk<char>( char )
{
return true;
}
#else
// As part of a fix for GCC 4.7
template <class T>
static constexpr int to_int( T t ){ return t; }
template<class Ch>
typename std::enable_if < to_int(std::numeric_limits<Ch>::max()) < to_int(256), bool>::type
characterOk( Ch )
{
return true;
}
template<class Ch>
typename std::enable_if< to_int(std::numeric_limits<Ch>::max()) >= to_int(256), bool>::type
characterOk(Ch c)
{ return c < 256; }
#endif
//! \todo Optimization with custom double-to-string converter.
void WriteDouble(double d) {
char buffer[100];
#if _MSC_VER
int ret = sprintf_s(buffer, sizeof(buffer), double_format, d);
#else
int ret = snprintf(buffer, sizeof(buffer), double_format, d);
#endif
RAPIDJSON_ASSERT(ret >= 1);
for (int i = 0; i < ret; i++)
stream_.Put(buffer[i]);
}
void WriteLongDouble(long double d) {
char buffer[256];
#if _MSC_VER
int ret = sprintf_s(buffer, sizeof(buffer), long_double_format, d);
#else
int ret = snprintf(buffer, sizeof(buffer), long_double_format, d);
#endif
RAPIDJSON_ASSERT(ret >= 1);
for (int i = 0; i < ret; i++)
stream_.Put(buffer[i]);
}
void WriteLongLong(long long d) {
char buffer[256];
#if _MSC_VER
int ret = sprintf_s(buffer, sizeof(buffer), "%lld", d);
#else
int ret = snprintf(buffer, sizeof(buffer), "%lld", d);
#endif
RAPIDJSON_ASSERT(ret >= 1);
for (int i = 0; i < ret; i++)
stream_.Put(buffer[i]);
}
void WriteULongLong(unsigned long long d) {
char buffer[256];
#if _MSC_VER
int ret = sprintf_s(buffer, sizeof(buffer), "%llu", d);
#else
int ret = snprintf(buffer, sizeof(buffer), "%llu", d);
#endif
RAPIDJSON_ASSERT(ret >= 1);
for (int i = 0; i < ret; i++)
stream_.Put(buffer[i]);
}
void WriteString(const Ch* str, SizeType length) {
static const char hexDigits[] = "0123456789ABCDEF";
static const char escape[256] = {
#define Z16 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
//0 1 2 3 4 5 6 7 8 9 A B C D E F
'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'b', 't', 'n', 'u', 'f', 'r', 'u', 'u', // 00
'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', 'u', // 10
0, 0, '"', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20
Z16, Z16, // 30~4F
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,'\\', 0, 0, 0, // 50
Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16, Z16 // 60~FF
#undef Z16
};
stream_.Put('\"');
for (const Ch* p = str; p != str + length; ++p) {
if ((sizeof(Ch) == 1 || characterOk(*p)) && escape[(unsigned char)*p]) {
//if ((sizeof(Ch) == 1 || *p < 256) && escape[(unsigned char)*p]) {
stream_.Put('\\');
stream_.Put(escape[(unsigned char)*p]);
if (escape[(unsigned char)*p] == 'u') {
stream_.Put('0');
stream_.Put('0');
stream_.Put(hexDigits[(*p) >> 4]);
stream_.Put(hexDigits[(*p) & 0xF]);
}
}
else
stream_.Put(*p);
}
stream_.Put('\"');
}
void WriteStartObject() { stream_.Put('{'); }
void WriteEndObject() { stream_.Put('}'); }
void WriteStartArray() { stream_.Put('['); }
void WriteEndArray() { stream_.Put(']'); }
void Prefix(Type type) {
(void)type;
if (level_stack_.GetSize() != 0) { // this value is not at root
Level* level = level_stack_.template Top<Level>();
if (level->valueCount > 0) {
if (level->inArray)
stream_.Put(','); // add comma if it is not the first element in array
else // in object
stream_.Put((level->valueCount % 2 == 0) ? ',' : ':');
}
if (!level->inArray && level->valueCount % 2 == 0)
RAPIDJSON_ASSERT(type == kStringType); // if it's in object, then even number should be a name
level->valueCount++;
}
else
RAPIDJSON_ASSERT(type == kObjectType || type == kArrayType);
}
Stream& stream_;
internal::Stack<Allocator> level_stack_;
private:
// Prohibit assignment for VC C4512 warning
Writer& operator=(const Writer& w);
};
} // namespace rapidjson
#ifdef _MSC_VER
#pragma warning(pop)
#endif
#endif // RAPIDJSON_RAPIDJSON_H_
Use of this software is granted under one of the following two licenses,
to be chosen freely by the user.
1. Boost Software License - Version 1.0 - August 17th, 2003
===============================================================================
Copyright (c) 2006, 2007 Marcin Kalicinski
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.
2. The MIT License
===============================================================================
Copyright (c) 2006, 2007 Marcin Kalicinski
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.
This source diff could not be displayed because it is too large. You can view the blob instead.
This source diff could not be displayed because it is too large. You can view the blob instead.
#ifndef RAPIDXML_ITERATORS_HPP_INCLUDED
#define RAPIDXML_ITERATORS_HPP_INCLUDED
// Copyright (C) 2006, 2009 Marcin Kalicinski
// Version 1.13
// Revision $DateTime: 2009/05/13 01:46:17 $
#include "rapidxml.hpp"
namespace rapidxml
{
//! Iterator of child nodes of xml_node
template<class Ch>
class node_iterator
{
public:
typedef typename xml_node<Ch> value_type;
typedef typename xml_node<Ch> &reference;
typedef typename xml_node<Ch> *pointer;
typedef std::ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
node_iterator()
: m_node(0)
{
}
node_iterator(xml_node<Ch> *node)
: m_node(node->first_node())
{
}
reference operator *() const
{
assert(m_node);
return *m_node;
}
pointer operator->() const
{
assert(m_node);
return m_node;
}
node_iterator& operator++()
{
assert(m_node);
m_node = m_node->next_sibling();
return *this;
}
node_iterator operator++(int)
{
node_iterator tmp = *this;
++this;
return tmp;
}
node_iterator& operator--()
{
assert(m_node && m_node->previous_sibling());
m_node = m_node->previous_sibling();
return *this;
}
node_iterator operator--(int)
{
node_iterator tmp = *this;
++this;
return tmp;
}
bool operator ==(const node_iterator<Ch> &rhs)
{
return m_node == rhs.m_node;
}
bool operator !=(const node_iterator<Ch> &rhs)
{
return m_node != rhs.m_node;
}
private:
xml_node<Ch> *m_node;
};
//! Iterator of child attributes of xml_node
template<class Ch>
class attribute_iterator
{
public:
typedef typename xml_attribute<Ch> value_type;
typedef typename xml_attribute<Ch> &reference;
typedef typename xml_attribute<Ch> *pointer;
typedef std::ptrdiff_t difference_type;
typedef std::bidirectional_iterator_tag iterator_category;
attribute_iterator()
: m_attribute(0)
{
}
attribute_iterator(xml_node<Ch> *node)
: m_attribute(node->first_attribute())
{
}
reference operator *() const
{
assert(m_attribute);
return *m_attribute;
}
pointer operator->() const
{
assert(m_attribute);
return m_attribute;
}
attribute_iterator& operator++()
{
assert(m_attribute);
m_attribute = m_attribute->next_attribute();
return *this;
}
attribute_iterator operator++(int)
{
attribute_iterator tmp = *this;
++this;
return tmp;
}
attribute_iterator& operator--()
{
assert(m_attribute && m_attribute->previous_attribute());
m_attribute = m_attribute->previous_attribute();
return *this;
}
attribute_iterator operator--(int)
{
attribute_iterator tmp = *this;
++this;
return tmp;
}
bool operator ==(const attribute_iterator<Ch> &rhs)
{
return m_attribute == rhs.m_attribute;
}
bool operator !=(const attribute_iterator<Ch> &rhs)
{
return m_attribute != rhs.m_attribute;
}
private:
xml_attribute<Ch> *m_attribute;
};
}
#endif
#ifndef RAPIDXML_PRINT_HPP_INCLUDED
#define RAPIDXML_PRINT_HPP_INCLUDED
// Copyright (C) 2006, 2009 Marcin Kalicinski
// Version 1.13
// Revision $DateTime: 2009/05/13 01:46:17 $
#include "rapidxml.hpp"
// Only include streams if not disabled
#ifndef RAPIDXML_NO_STREAMS
#include <ostream>
#include <iterator>
#endif
namespace rapidxml
{
///////////////////////////////////////////////////////////////////////
// Printing flags
const int print_no_indenting = 0x1; //!< Printer flag instructing the printer to suppress indenting of XML. See print() function.
///////////////////////////////////////////////////////////////////////
// Internal
//! \cond internal
namespace internal
{
///////////////////////////////////////////////////////////////////////////
// Internal character operations
// Copy characters from given range to given output iterator
template<class OutIt, class Ch>
inline OutIt copy_chars(const Ch *begin, const Ch *end, OutIt out)
{
while (begin != end)
*out++ = *begin++;
return out;
}
// Copy characters from given range to given output iterator and expand
// characters into references (&lt; &gt; &apos; &quot; &amp;)
template<class OutIt, class Ch>
inline OutIt copy_and_expand_chars(const Ch *begin, const Ch *end, Ch noexpand, OutIt out)
{
while (begin != end)
{
if (*begin == noexpand)
{
*out++ = *begin; // No expansion, copy character
}
else
{
switch (*begin)
{
case Ch('<'):
*out++ = Ch('&'); *out++ = Ch('l'); *out++ = Ch('t'); *out++ = Ch(';');
break;
case Ch('>'):
*out++ = Ch('&'); *out++ = Ch('g'); *out++ = Ch('t'); *out++ = Ch(';');
break;
case Ch('\''):
*out++ = Ch('&'); *out++ = Ch('a'); *out++ = Ch('p'); *out++ = Ch('o'); *out++ = Ch('s'); *out++ = Ch(';');
break;
case Ch('"'):
*out++ = Ch('&'); *out++ = Ch('q'); *out++ = Ch('u'); *out++ = Ch('o'); *out++ = Ch('t'); *out++ = Ch(';');
break;
case Ch('&'):
*out++ = Ch('&'); *out++ = Ch('a'); *out++ = Ch('m'); *out++ = Ch('p'); *out++ = Ch(';');
break;
default:
*out++ = *begin; // No expansion, copy character
}
}
++begin; // Step to next character
}
return out;
}
// Fill given output iterator with repetitions of the same character
template<class OutIt, class Ch>
inline OutIt fill_chars(OutIt out, int n, Ch ch)
{
for (int i = 0; i < n; ++i)
*out++ = ch;
return out;
}
// Find character
template<class Ch, Ch ch>
inline bool find_char(const Ch *begin, const Ch *end)
{
while (begin != end)
if (*begin++ == ch)
return true;
return false;
}
///////////////////////////////////////////////////////////////////////////
// Internal printing operations
// Print node
template<class OutIt, class Ch>
inline OutIt print_node(OutIt out, const xml_node<Ch> *node, int flags, int indent);
// Print children of the node
template<class OutIt, class Ch>
inline OutIt print_children(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
for (xml_node<Ch> *child = node->first_node(); child; child = child->next_sibling())
out = print_node(out, child, flags, indent);
return out;
}
// Print attributes of the node
template<class OutIt, class Ch>
inline OutIt print_attributes(OutIt out, const xml_node<Ch> *node, int /*flags*/)
{
for (xml_attribute<Ch> *attribute = node->first_attribute(); attribute; attribute = attribute->next_attribute())
{
if (attribute->name() && attribute->value())
{
// Print attribute name
*out = Ch(' '), ++out;
out = copy_chars(attribute->name(), attribute->name() + attribute->name_size(), out);
*out = Ch('='), ++out;
// Print attribute value using appropriate quote type
if (find_char<Ch, Ch('"')>(attribute->value(), attribute->value() + attribute->value_size()))
{
*out = Ch('\''), ++out;
out = copy_and_expand_chars(attribute->value(), attribute->value() + attribute->value_size(), Ch('"'), out);
*out = Ch('\''), ++out;
}
else
{
*out = Ch('"'), ++out;
out = copy_and_expand_chars(attribute->value(), attribute->value() + attribute->value_size(), Ch('\''), out);
*out = Ch('"'), ++out;
}
}
}
return out;
}
// Print data node
template<class OutIt, class Ch>
inline OutIt print_data_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
assert(node->type() == node_data);
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
out = copy_and_expand_chars(node->value(), node->value() + node->value_size(), Ch(0), out);
return out;
}
// Print data node
template<class OutIt, class Ch>
inline OutIt print_cdata_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
assert(node->type() == node_cdata);
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
*out = Ch('<'); ++out;
*out = Ch('!'); ++out;
*out = Ch('['); ++out;
*out = Ch('C'); ++out;
*out = Ch('D'); ++out;
*out = Ch('A'); ++out;
*out = Ch('T'); ++out;
*out = Ch('A'); ++out;
*out = Ch('['); ++out;
out = copy_chars(node->value(), node->value() + node->value_size(), out);
*out = Ch(']'); ++out;
*out = Ch(']'); ++out;
*out = Ch('>'); ++out;
return out;
}
// Print element node
template<class OutIt, class Ch>
inline OutIt print_element_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
assert(node->type() == node_element);
// Print element name and attributes, if any
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
*out = Ch('<'), ++out;
out = copy_chars(node->name(), node->name() + node->name_size(), out);
out = print_attributes(out, node, flags);
// If node is childless
if (node->value_size() == 0 && !node->first_node())
{
// Print childless node tag ending
*out = Ch('/'), ++out;
*out = Ch('>'), ++out;
}
else
{
// Print normal node tag ending
*out = Ch('>'), ++out;
// Test if node contains a single data node only (and no other nodes)
xml_node<Ch> *child = node->first_node();
if (!child)
{
// If node has no children, only print its value without indenting
out = copy_and_expand_chars(node->value(), node->value() + node->value_size(), Ch(0), out);
}
else if (child->next_sibling() == 0 && child->type() == node_data)
{
// If node has a sole data child, only print its value without indenting
out = copy_and_expand_chars(child->value(), child->value() + child->value_size(), Ch(0), out);
}
else
{
// Print all children with full indenting
if (!(flags & print_no_indenting))
*out = Ch('\n'), ++out;
out = print_children(out, node, flags, indent + 1);
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
}
// Print node end
*out = Ch('<'), ++out;
*out = Ch('/'), ++out;
out = copy_chars(node->name(), node->name() + node->name_size(), out);
*out = Ch('>'), ++out;
}
return out;
}
// Print declaration node
template<class OutIt, class Ch>
inline OutIt print_declaration_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
// Print declaration start
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
*out = Ch('<'), ++out;
*out = Ch('?'), ++out;
*out = Ch('x'), ++out;
*out = Ch('m'), ++out;
*out = Ch('l'), ++out;
// Print attributes
out = print_attributes(out, node, flags);
// Print declaration end
*out = Ch('?'), ++out;
*out = Ch('>'), ++out;
return out;
}
// Print comment node
template<class OutIt, class Ch>
inline OutIt print_comment_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
assert(node->type() == node_comment);
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
*out = Ch('<'), ++out;
*out = Ch('!'), ++out;
*out = Ch('-'), ++out;
*out = Ch('-'), ++out;
out = copy_chars(node->value(), node->value() + node->value_size(), out);
*out = Ch('-'), ++out;
*out = Ch('-'), ++out;
*out = Ch('>'), ++out;
return out;
}
// Print doctype node
template<class OutIt, class Ch>
inline OutIt print_doctype_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
assert(node->type() == node_doctype);
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
*out = Ch('<'), ++out;
*out = Ch('!'), ++out;
*out = Ch('D'), ++out;
*out = Ch('O'), ++out;
*out = Ch('C'), ++out;
*out = Ch('T'), ++out;
*out = Ch('Y'), ++out;
*out = Ch('P'), ++out;
*out = Ch('E'), ++out;
*out = Ch(' '), ++out;
out = copy_chars(node->value(), node->value() + node->value_size(), out);
*out = Ch('>'), ++out;
return out;
}
// Print pi node
template<class OutIt, class Ch>
inline OutIt print_pi_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
assert(node->type() == node_pi);
if (!(flags & print_no_indenting))
out = fill_chars(out, indent, Ch('\t'));
*out = Ch('<'), ++out;
*out = Ch('?'), ++out;
out = copy_chars(node->name(), node->name() + node->name_size(), out);
*out = Ch(' '), ++out;
out = copy_chars(node->value(), node->value() + node->value_size(), out);
*out = Ch('?'), ++out;
*out = Ch('>'), ++out;
return out;
}
// Print node
template<class OutIt, class Ch>
inline OutIt print_node(OutIt out, const xml_node<Ch> *node, int flags, int indent)
{
// Print proper node type
switch (node->type())
{
// Document
case node_document:
out = print_children(out, node, flags, indent);
break;
// Element
case node_element:
out = print_element_node(out, node, flags, indent);
break;
// Data
case node_data:
out = print_data_node(out, node, flags, indent);
break;
// CDATA
case node_cdata:
out = print_cdata_node(out, node, flags, indent);
break;
// Declaration
case node_declaration:
out = print_declaration_node(out, node, flags, indent);
break;
// Comment
case node_comment:
out = print_comment_node(out, node, flags, indent);
break;
// Doctype
case node_doctype:
out = print_doctype_node(out, node, flags, indent);
break;
// Pi
case node_pi:
out = print_pi_node(out, node, flags, indent);
break;
// Unknown
default:
assert(0);
break;
}
// If indenting not disabled, add line break after node
if (!(flags & print_no_indenting))
*out = Ch('\n'), ++out;
// Return modified iterator
return out;
}
}
//! \endcond
///////////////////////////////////////////////////////////////////////////
// Printing
//! Prints XML to given output iterator.
//! \param out Output iterator to print to.
//! \param node Node to be printed. Pass xml_document to print entire document.
//! \param flags Flags controlling how XML is printed.
//! \return Output iterator pointing to position immediately after last character of printed text.
template<class OutIt, class Ch>
inline OutIt print(OutIt out, const xml_node<Ch> &node, int flags = 0)
{
return internal::print_node(out, &node, flags, 0);
}
#ifndef RAPIDXML_NO_STREAMS
//! Prints XML to given output stream.
//! \param out Output stream to print to.
//! \param node Node to be printed. Pass xml_document to print entire document.
//! \param flags Flags controlling how XML is printed.
//! \return Output stream.
template<class Ch>
inline std::basic_ostream<Ch> &print(std::basic_ostream<Ch> &out, const xml_node<Ch> &node, int flags = 0)
{
print(std::ostream_iterator<Ch>(out), node, flags);
return out;
}
//! Prints formatted XML to given output stream. Uses default printing flags. Use print() function to customize printing process.
//! \param out Output stream to print to.
//! \param node Node to be printed.
//! \return Output stream.
template<class Ch>
inline std::basic_ostream<Ch> &operator <<(std::basic_ostream<Ch> &out, const xml_node<Ch> &node)
{
return print(out, node);
}
#endif
}
#endif
#ifndef RAPIDXML_UTILS_HPP_INCLUDED
#define RAPIDXML_UTILS_HPP_INCLUDED
// Copyright (C) 2006, 2009 Marcin Kalicinski
// Version 1.13
// Revision $DateTime: 2009/05/13 01:46:17 $
//! in certain simple scenarios. They should probably not be used if maximizing performance is the main objective.
#include "rapidxml.hpp"
#include <vector>
#include <string>
#include <fstream>
#include <stdexcept>
namespace rapidxml
{
//! Represents data loaded from a file
template<class Ch = char>
class file
{
public:
//! Loads file into the memory. Data will be automatically destroyed by the destructor.
//! \param filename Filename to load.
file(const char *filename)
{
using namespace std;
// Open stream
basic_ifstream<Ch> stream(filename, ios::binary);
if (!stream)
throw runtime_error(string("cannot open file ") + filename);
stream.unsetf(ios::skipws);
// Determine stream size
stream.seekg(0, ios::end);
size_t size = stream.tellg();
stream.seekg(0);
// Load data and add terminating 0
m_data.resize(size + 1);
stream.read(&m_data.front(), static_cast<streamsize>(size));
m_data[size] = 0;
}
//! Loads file into the memory. Data will be automatically destroyed by the destructor
//! \param stream Stream to load from
file(std::basic_istream<Ch> &stream)
{
using namespace std;
// Load data and add terminating 0
stream.unsetf(ios::skipws);
m_data.assign(istreambuf_iterator<Ch>(stream), istreambuf_iterator<Ch>());
if (stream.fail() || stream.bad())
throw runtime_error("error reading stream");
m_data.push_back(0);
}
//! Gets file data.
//! \return Pointer to data of file.
Ch *data()
{
return &m_data.front();
}
//! Gets file data.
//! \return Pointer to data of file.
const Ch *data() const
{
return &m_data.front();
}
//! Gets file data size.
//! \return Size of file data, in characters.
std::size_t size() const
{
return m_data.size();
}
private:
std::vector<Ch> m_data; // File data
};
//! Counts children of node. Time complexity is O(n).
//! \return Number of children of node
template<class Ch>
inline std::size_t count_children(xml_node<Ch> *node)
{
xml_node<Ch> *child = node->first_node();
std::size_t count = 0;
while (child)
{
++count;
child = child->next_sibling();
}
return count;
}
//! Counts attributes of node. Time complexity is O(n).
//! \return Number of attributes of node
template<class Ch>
inline std::size_t count_attributes(xml_node<Ch> *node)
{
xml_attribute<Ch> *attr = node->first_attribute();
std::size_t count = 0;
while (attr)
{
++count;
attr = attr->next_attribute();
}
return count;
}
}
#endif
/*! \file macros.hpp
\brief Preprocessor macros that can customise the cereal library
By default, cereal looks for serialization functions with very
specific names, that is: serialize, load, save, load_minimal,
or save_minimal.
This file allows an advanced user to change these names to conform
to some other style or preference. This is implemented using
preprocessor macros.
As a result of this, in internal cereal code you will see macros
used for these function names. In user code, you should name
the functions like you normally would and not use the macros
to improve readability.
\ingroup utility */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_MACROS_HPP_
#define CEREAL_MACROS_HPP_
#ifndef CEREAL_SERIALIZE_FUNCTION_NAME
//! The serialization/deserialization function name to search for.
/*! You can define @c CEREAL_SERIALIZE_FUNCTION_NAME to be different assuming
you do so before this file is included. */
#define CEREAL_SERIALIZE_FUNCTION_NAME serialize
#endif // CEREAL_SERIALIZE_FUNCTION_NAME
#ifndef CEREAL_LOAD_FUNCTION_NAME
//! The deserialization (load) function name to search for.
/*! You can define @c CEREAL_LOAD_FUNCTION_NAME to be different assuming you do so
before this file is included. */
#define CEREAL_LOAD_FUNCTION_NAME load
#endif // CEREAL_LOAD_FUNCTION_NAME
#ifndef CEREAL_SAVE_FUNCTION_NAME
//! The serialization (save) function name to search for.
/*! You can define @c CEREAL_SAVE_FUNCTION_NAME to be different assuming you do so
before this file is included. */
#define CEREAL_SAVE_FUNCTION_NAME save
#endif // CEREAL_SAVE_FUNCTION_NAME
#ifndef CEREAL_LOAD_MINIMAL_FUNCTION_NAME
//! The deserialization (load_minimal) function name to search for.
/*! You can define @c CEREAL_LOAD_MINIMAL_FUNCTION_NAME to be different assuming you do so
before this file is included. */
#define CEREAL_LOAD_MINIMAL_FUNCTION_NAME load_minimal
#endif // CEREAL_LOAD_MINIMAL_FUNCTION_NAME
#ifndef CEREAL_SAVE_MINIMAL_FUNCTION_NAME
//! The serialization (save_minimal) function name to search for.
/*! You can define @c CEREAL_SAVE_MINIMAL_FUNCTION_NAME to be different assuming you do so
before this file is included. */
#define CEREAL_SAVE_MINIMAL_FUNCTION_NAME save_minimal
#endif // CEREAL_SAVE_MINIMAL_FUNCTION_NAME
#endif // CEREAL_MACROS_HPP_
/*! \file array.hpp
\brief Support for types found in \<array\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_ARRAY_HPP_
#define CEREAL_TYPES_ARRAY_HPP_
#include <cereal/cereal.hpp>
#include <array>
namespace cereal
{
//! Saving for std::array primitive types
//! using binary serialization, if supported
template <class Archive, class T, size_t N> inline
typename std::enable_if<traits::is_output_serializable<BinaryData<T>, Archive>::value
&& std::is_arithmetic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::array<T, N> const & array )
{
ar( binary_data( array.data(), sizeof(array) ) );
}
//! Loading for std::array primitive types
//! using binary serialization, if supported
template <class Archive, class T, size_t N> inline
typename std::enable_if<traits::is_input_serializable<BinaryData<T>, Archive>::value
&& std::is_arithmetic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::array<T, N> & array )
{
ar( binary_data( array.data(), sizeof(array) ) );
}
//! Saving for std::array all other types
template <class Archive, class T, size_t N> inline
typename std::enable_if<!traits::is_output_serializable<BinaryData<T>, Archive>::value
|| !std::is_arithmetic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::array<T, N> const & array )
{
for( auto const & i : array )
ar( i );
}
//! Loading for std::array all other types
template <class Archive, class T, size_t N> inline
typename std::enable_if<!traits::is_input_serializable<BinaryData<T>, Archive>::value
|| !std::is_arithmetic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::array<T, N> & array )
{
for( auto & i : array )
ar( i );
}
} // namespace cereal
#endif // CEREAL_TYPES_ARRAY_HPP_
/*! \file base_class.hpp
\brief Support for base classes (virtual and non-virtual)
\ingroup OtherTypes */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_BASE_CLASS_HPP_
#define CEREAL_TYPES_BASE_CLASS_HPP_
#include <cereal/details/traits.hpp>
namespace cereal
{
//! Casts a derived class to its non-virtual base class in a way that safely supports abstract classes
/*! This should be used in cases when a derived type needs to serialize its base type. This is better than directly
using static_cast, as it allows for serialization of pure virtual (abstract) base classes.
\sa virtual_base_class
@code{.cpp}
struct MyBase
{
int x;
virtual void foo() = 0;
template <class Archive>
void serialize( Archive & ar )
{
ar( x );
}
};
struct MyDerived : public MyBase //<-- Note non-virtual inheritance
{
int y;
virtual void foo() {};
template <class Archive>
void serialize( Archive & ar )
{
ar( cereal::base_class<MyBase>(this) );
ar( y );
}
};
@endcode */
template<class Base>
struct base_class : private traits::detail::BaseCastBase
{
template<class Derived>
base_class(Derived const * derived) :
base_ptr(const_cast<Base*>(static_cast<Base const *>(derived)))
{ static_assert( std::is_base_of<Base, Derived>::value, "Can only use base_class on a valid base class" ); }
Base * base_ptr;
};
//! Casts a derived class to its virtual base class in a way that allows cereal to track inheritance
/*! This should be used in cases when a derived type features virtual inheritance from some
base type. This allows cereal to track the inheritance and to avoid making duplicate copies
during serialization.
It is safe to use virtual_base_class in all circumstances for serializing base classes, even in cases
where virtual inheritance does not take place, though it may be slightly faster to utilize
cereal::base_class<> if you do not need to worry about virtual inheritance.
\sa base_class
@code{.cpp}
struct MyBase
{
int x;
template <class Archive>
void serialize( Archive & ar )
{
ar( x );
}
};
struct MyLeft : virtual MyBase //<-- Note the virtual inheritance
{
int y;
template <class Archive>
void serialize( Archive & ar )
{
ar( cereal::virtual_base_class<MyBase>( this ) );
ar( y );
}
};
struct MyRight : virtual MyBase
{
int z;
template <class Archive>
void serialize( Archive & ar )
{
ar( cereal::virtual_base_clas<MyBase>( this ) );
ar( z );
}
};
// diamond virtual inheritance; contains one copy of each base class
struct MyDerived : virtual MyLeft, virtual MyRight
{
int a;
template <class Archive>
void serialize( Archive & ar )
{
ar( cereal::virtual_base_class<MyLeft>( this ) ); // safely serialize data members in MyLeft
ar( cereal::virtual_base_class<MyRight>( this ) ); // safely serialize data members in MyRight
ar( a );
// Because we used virtual_base_class, cereal will ensure that only one instance of MyBase is
// serialized as we traverse the inheritance heirarchy. This means that there will be one copy
// each of the variables x, y, z, and a
// If we had chosen to use static_cast<> instead, cereal would perform no tracking and
// assume that every base class should be serialized (in this case leading to a duplicate
// serialization of MyBase due to diamond inheritance
};
}
@endcode */
template<class Base>
struct virtual_base_class : private traits::detail::BaseCastBase
{
template<class Derived>
virtual_base_class(Derived const * derived) :
base_ptr(const_cast<Base*>(static_cast<Base const *>(derived)))
{ static_assert( std::is_base_of<Base, Derived>::value, "Can only use base_class on a valid base class" ); }
Base * base_ptr;
};
} // namespace cereal
#endif // CEREAL_TYPES_BASE_CLASS_HPP_
/*! \file bitset.hpp
\brief Support for types found in \<bitset\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_BITSET_HPP_
#define CEREAL_TYPES_BITSET_HPP_
#include <cereal/cereal.hpp>
#include <bitset>
namespace cereal
{
namespace bitset_detail
{
//! The type the bitset is encoded with
/*! @internal */
enum class type : uint8_t
{
ulong,
ullong,
string
};
}
//! Serializing (save) for std::bitset
template <class Archive, size_t N> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::bitset<N> const & bits )
{
try
{
auto const b = bits.to_ulong();
ar( CEREAL_NVP_("type", bitset_detail::type::ulong) );
ar( CEREAL_NVP_("data", b) );
}
catch( std::overflow_error const & )
{
try
{
auto const b = bits.to_ullong();
ar( CEREAL_NVP_("type", bitset_detail::type::ullong) );
ar( CEREAL_NVP_("data", b) );
}
catch( std::overflow_error const & )
{
ar( CEREAL_NVP_("type", bitset_detail::type::string) );
ar( CEREAL_NVP_("data", bits.to_string()) );
}
}
}
//! Serializing (load) for std::bitset
template <class Archive, size_t N> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::bitset<N> & bits )
{
bitset_detail::type t;
ar( CEREAL_NVP_("type", t) );
switch( t )
{
case bitset_detail::type::ulong:
{
unsigned long b;
ar( CEREAL_NVP_("data", b) );
bits = std::bitset<N>( b );
break;
}
case bitset_detail::type::ullong:
{
unsigned long long b;
ar( CEREAL_NVP_("data", b) );
bits = std::bitset<N>( b );
break;
}
case bitset_detail::type::string:
{
std::string b;
ar( CEREAL_NVP_("data", b) );
bits = std::bitset<N>( b );
break;
}
default:
throw Exception("Invalid bitset data representation");
}
}
} // namespace cereal
#endif // CEREAL_TYPES_BITSET_HPP_
/*! \file boost_variant.hpp
\brief Support for boost::variant
\ingroup OtherTypes */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_BOOST_VARIANT_HPP_
#define CEREAL_TYPES_BOOST_VARIANT_HPP_
#include <cereal/cereal.hpp>
#include <boost/variant.hpp>
#include <boost/mpl/size.hpp>
namespace cereal
{
namespace variant_detail
{
//! @internal
template <class Archive>
struct variant_save_visitor : boost::static_visitor<>
{
variant_save_visitor(Archive & ar_) : ar(ar_) {}
template<class T>
void operator()(T const & value) const
{
ar( CEREAL_NVP_("data", value) );
}
Archive & ar;
};
//! @internal
template<int N, class Variant, class ... Args, class Archive>
typename std::enable_if<N == boost::mpl::size<typename Variant::types>::value, void>::type
load_variant(Archive & /*ar*/, int /*target*/, Variant & /*variant*/)
{
throw ::cereal::Exception("Error traversing variant during load");
}
//! @internal
template<int N, class Variant, class H, class ... T, class Archive>
typename std::enable_if<N < boost::mpl::size<typename Variant::types>::value, void>::type
load_variant(Archive & ar, int target, Variant & variant)
{
if(N == target)
{
H value;
ar( CEREAL_NVP_("data", value) );
variant = value;
}
else
load_variant<N+1, Variant, T...>(ar, target, variant);
}
} // namespace variant_detail
//! Saving for boost::variant
template <class Archive, typename... VariantTypes> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, boost::variant<VariantTypes...> const & variant )
{
int32_t which = variant.which();
ar( CEREAL_NVP_("which", which) );
variant_detail::variant_save_visitor<Archive> visitor(ar);
variant.apply_visitor(visitor);
}
//! Loading for boost::variant
template <class Archive, typename... VariantTypes> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, boost::variant<VariantTypes...> & variant )
{
typedef typename boost::variant<VariantTypes...>::types types;
int32_t which;
ar( CEREAL_NVP_("which", which) );
if(which >= boost::mpl::size<types>::value)
throw Exception("Invalid 'which' selector when deserializing boost::variant");
variant_detail::load_variant<0, boost::variant<VariantTypes...>, VariantTypes...>(ar, which, variant);
}
} // namespace cereal
#endif // CEREAL_TYPES_BOOST_VARIANT_HPP_
/*! \file chrono.hpp
\brief Support for types found in \<chrono\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_CHRONO_HPP_
#define CEREAL_TYPES_CHRONO_HPP_
#include <chrono>
namespace cereal
{
//! Saving std::chrono::duration
template <class Archive, class R, class P> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::chrono::duration<R, P> const & dur )
{
ar( CEREAL_NVP_("count", dur.count()) );
}
//! Loading std::chrono::duration
template <class Archive, class R, class P> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::chrono::duration<R, P> & dur )
{
R count;
ar( CEREAL_NVP_("count", count) );
dur = std::chrono::duration<R, P>{count};
}
//! Saving std::chrono::time_point
template <class Archive, class C, class D> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::chrono::time_point<C, D> const & dur )
{
ar( CEREAL_NVP_("time_since_epoch", dur.time_since_epoch()) );
}
//! Loading std::chrono::time_point
template <class Archive, class C, class D> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::chrono::time_point<C, D> & dur )
{
D elapsed;
ar( CEREAL_NVP_("time_since_epoch", elapsed) );
dur = std::chrono::time_point<C, D>{elapsed};
}
} // namespace cereal
#endif // CEREAL_TYPES_CHRONO_HPP_
/*! \file common.hpp
\brief Support common types - always included automatically
\ingroup OtherTypes */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_COMMON_HPP_
#define CEREAL_TYPES_COMMON_HPP_
#include <cereal/cereal.hpp>
namespace cereal
{
namespace common_detail
{
//! Serialization for arrays if BinaryData is supported and we are arithmetic
/*! @internal */
template <class Archive, class T> inline
void serializeArray( Archive & ar, T & array, std::true_type /* binary_supported */ )
{
ar( binary_data( array, sizeof(array) ) );
}
//! Serialization for arrays if BinaryData is not supported or we are not arithmetic
/*! @internal */
template <class Archive, class T> inline
void serializeArray( Archive & ar, T & array, std::false_type /* binary_supported */ )
{
for( auto & i : array )
ar( i );
}
namespace
{
//! Gets the underlying type of an enum
/*! @internal */
template <class T, bool IsEnum>
struct enum_underlying_type : std::false_type {};
//! Gets the underlying type of an enum
/*! Specialization for when we actually have an enum
@internal */
template <class T>
struct enum_underlying_type<T, true> { using type = typename std::underlying_type<T>::type; };
} // anon namespace
//! Checks if a type is an enum
/*! This is needed over simply calling std::is_enum because the type
traits checking at compile time will attempt to call something like
load_minimal with a special NoConvertRef struct that wraps up the true type.
This will strip away any of that and also expose the true underlying type.
@internal */
template <class T>
class is_enum
{
private:
using DecayedT = typename std::decay<T>::type;
using StrippedT = typename ::cereal::traits::strip_minimal<DecayedT>::type;
public:
static const bool value = std::is_enum<StrippedT>::value;
using type = StrippedT;
using base_type = typename enum_underlying_type<StrippedT, value>::type;
};
}
//! Saving for enum types
template <class Archive, class T> inline
typename std::enable_if<common_detail::is_enum<T>::value,
typename common_detail::is_enum<T>::base_type>::type
CEREAL_SAVE_MINIMAL_FUNCTION_NAME( Archive const &, T const & t )
{
return static_cast<typename common_detail::is_enum<T>::base_type>(t);
}
//! Loading for enum types
template <class Archive, class T> inline
typename std::enable_if<common_detail::is_enum<T>::value, void>::type
CEREAL_LOAD_MINIMAL_FUNCTION_NAME( Archive const &, T && t,
typename common_detail::is_enum<T>::base_type const & value )
{
t = reinterpret_cast<typename common_detail::is_enum<T>::type const &>( value );
}
//! Serialization for raw pointers
/*! This exists only to throw a static_assert to let users know we don't support raw pointers. */
template <class Archive, class T> inline
void CEREAL_SERIALIZE_FUNCTION_NAME( Archive &, T * & )
{
static_assert(cereal::traits::detail::delay_static_assert<T>::value,
"Cereal does not support serializing raw pointers - please use a smart pointer");
}
//! Serialization for C style arrays
template <class Archive, class T> inline
typename std::enable_if<std::is_array<T>::value, void>::type
CEREAL_SERIALIZE_FUNCTION_NAME(Archive & ar, T & array)
{
common_detail::serializeArray( ar, array,
std::integral_constant<bool, traits::is_output_serializable<BinaryData<T>, Archive>::value &&
std::is_arithmetic<typename std::remove_all_extents<T>::type>::value>() );
}
} // namespace cereal
#endif // CEREAL_TYPES_COMMON_HPP_
/*! \file complex.hpp
\brief Support for types found in \<complex\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_COMPLEX_HPP_
#define CEREAL_TYPES_COMPLEX_HPP_
#include <complex>
namespace cereal
{
//! Serializing (save) for std::complex
template <class Archive, class T> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::complex<T> const & comp )
{
ar( CEREAL_NVP_("real", comp.real()),
CEREAL_NVP_("imag", comp.imag()) );
}
//! Serializing (load) for std::complex
template <class Archive, class T> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::complex<T> & bits )
{
T real, imag;
ar( CEREAL_NVP_("real", real),
CEREAL_NVP_("imag", imag) );
bits = {real, imag};
}
} // namespace cereal
#endif // CEREAL_TYPES_COMPLEX_HPP_
/*! \file deque.hpp
\brief Support for types found in \<deque\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_DEQUE_HPP_
#define CEREAL_TYPES_DEQUE_HPP_
#include <cereal/cereal.hpp>
#include <deque>
namespace cereal
{
//! Saving for std::deque
template <class Archive, class T, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::deque<T, A> const & deque )
{
ar( make_size_tag( static_cast<size_type>(deque.size()) ) );
for( auto const & i : deque )
ar( i );
}
//! Loading for std::deque
template <class Archive, class T, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::deque<T, A> & deque )
{
size_type size;
ar( make_size_tag( size ) );
deque.resize( static_cast<size_t>( size ) );
for( auto & i : deque )
ar( i );
}
} // namespace cereal
#endif // CEREAL_TYPES_DEQUE_HPP_
/*! \file forward_list.hpp
\brief Support for types found in \<forward_list\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_FORWARD_LIST_HPP_
#define CEREAL_TYPES_FORWARD_LIST_HPP_
#include <cereal/cereal.hpp>
#include <forward_list>
namespace cereal
{
//! Saving for std::forward_list all other types
template <class Archive, class T, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::forward_list<T, A> const & forward_list )
{
// write the size - note that this is slow because we need to traverse
// the entire list. there are ways we could avoid this but this was chosen
// since it works in the most general fashion with any archive type
size_type const size = std::distance( forward_list.begin(), forward_list.end() );
ar( make_size_tag( size ) );
// write the list
for( const auto & i : forward_list )
ar( i );
}
//! Loading for std::forward_list all other types from
template <class Archive, class T, class A>
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::forward_list<T, A> & forward_list )
{
size_type size;
ar( make_size_tag( size ) );
forward_list.resize( static_cast<size_t>( size ) );
for( auto & i : forward_list )
ar( i );
}
} // namespace cereal
#endif // CEREAL_TYPES_FORWARD_LIST_HPP_
/*! \file list.hpp
\brief Support for types found in \<list\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_LIST_HPP_
#define CEREAL_TYPES_LIST_HPP_
#include <cereal/cereal.hpp>
#include <list>
namespace cereal
{
//! Saving for std::list
template <class Archive, class T, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::list<T, A> const & list )
{
ar( make_size_tag( static_cast<size_type>(list.size()) ) );
for( auto const & i : list )
ar( i );
}
//! Loading for std::list
template <class Archive, class T, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::list<T, A> & list )
{
size_type size;
ar( make_size_tag( size ) );
list.resize( static_cast<size_t>( size ) );
for( auto & i : list )
ar( i );
}
} // namespace cereal
#endif // CEREAL_TYPES_LIST_HPP_
/*! \file map.hpp
\brief Support for types found in \<map\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_MAP_HPP_
#define CEREAL_TYPES_MAP_HPP_
#include <cereal/cereal.hpp>
#include <map>
namespace cereal
{
namespace map_detail
{
//! @internal
template <class Archive, class MapT> inline
void save( Archive & ar, MapT const & map )
{
ar( make_size_tag( static_cast<size_type>(map.size()) ) );
for( const auto & i : map )
{
ar( make_map_item(i.first, i.second) );
}
}
//! @internal
template <class Archive, class MapT> inline
void load( Archive & ar, MapT & map )
{
size_type size;
ar( make_size_tag( size ) );
map.clear();
auto hint = map.begin();
for( size_t i = 0; i < size; ++i )
{
typename MapT::key_type key;
typename MapT::mapped_type value;
ar( make_map_item(key, value) );
#ifdef CEREAL_OLDER_GCC
hint = map.insert( hint, std::make_pair(std::move(key), std::move(value)) );
#else // NOT CEREAL_OLDER_GCC
hint = map.emplace_hint( hint, std::move( key ), std::move( value ) );
#endif // NOT CEREAL_OLDER_GCC
}
}
}
//! Saving for std::map
template <class Archive, class K, class T, class C, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::map<K, T, C, A> const & map )
{
map_detail::save( ar, map );
}
//! Loading for std::map
template <class Archive, class K, class T, class C, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::map<K, T, C, A> & map )
{
map_detail::load( ar, map );
}
//! Saving for std::multimap
/*! @note serialization for this type is not guaranteed to preserve ordering */
template <class Archive, class K, class T, class C, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::multimap<K, T, C, A> const & multimap )
{
map_detail::save( ar, multimap );
}
//! Loading for std::multimap
/*! @note serialization for this type is not guaranteed to preserve ordering */
template <class Archive, class K, class T, class C, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::multimap<K, T, C, A> & multimap )
{
map_detail::load( ar, multimap );
}
} // namespace cereal
#endif // CEREAL_TYPES_MAP_HPP_
/*! \file memory.hpp
\brief Support for types found in \<memory\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_SHARED_PTR_HPP_
#define CEREAL_TYPES_SHARED_PTR_HPP_
#include <cereal/cereal.hpp>
#include <memory>
#include <cstring>
namespace cereal
{
namespace memory_detail
{
//! A wrapper class to notify cereal that it is ok to serialize the contained pointer
/*! This mechanism allows us to intercept and properly handle polymorphic pointers
@internal */
template<class T>
struct PtrWrapper
{
PtrWrapper(T && p) : ptr(std::forward<T>(p)) {}
T & ptr;
PtrWrapper & operator=( PtrWrapper const & ) = delete;
};
//! Make a PtrWrapper
/*! @internal */
template<class T> inline
PtrWrapper<T> make_ptr_wrapper(T && t)
{
return {std::forward<T>(t)};
}
//! A struct that acts as a wrapper around calling load_andor_construct
/*! The purpose of this is to allow a load_and_construct call to properly enter into the
'data' NVP of the ptr_wrapper
@internal */
template <class Archive, class T>
struct LoadAndConstructLoadWrapper
{
LoadAndConstructLoadWrapper( T * ptr ) :
construct( ptr )
{ }
inline void CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar )
{
::cereal::detail::Construct<T, Archive>::load_andor_construct( ar, construct );
}
::cereal::construct<T> construct;
};
//! A helper struct for saving and restoring the state of types that derive from
//! std::enable_shared_from_this
/*! This special struct is necessary because when a user uses load_and_construct,
the weak_ptr (or whatever implementation defined variant) that allows
enable_shared_from_this to function correctly will not be initialized properly.
This internal weak_ptr can also be modified by the shared_ptr that is created
during the serialization of a polymorphic pointer, where cereal creates a
wrapper shared_ptr out of a void pointer to the real data.
In the case of load_and_construct, this happens because it is the allocation
of shared_ptr that perform this initialization, which we let happen on a buffer
of memory (aligned_storage). This buffer is then used for placement new
later on, effectively overwriting any initialized weak_ptr with a default
initialized one, eventually leading to issues when the user calls shared_from_this.
To get around these issues, we will store the memory for the enable_shared_from_this
portion of the class and replace it after whatever happens to modify it (e.g. the
user performing construction or the wrapper shared_ptr in saving).
Example usage:
@code{.cpp}
T * myActualPointer;
{
EnableSharedStateHelper<T> helper( myActualPointer ); // save the state
std::shared_ptr<T> myPtr( myActualPointer ); // modifies the internal weak_ptr
// helper restores state when it goes out of scope
}
@endcode
This is designed to be used in an RAII fashion - it will save state on construction
and restore it on destruction.
@tparam T Type pointed to by shared_ptr
@internal */
template <class T>
class EnableSharedStateHelper
{
// typedefs for parent type and storage type
using BaseType = typename ::cereal::traits::get_shared_from_this_base<T>::type;
using ParentType = std::enable_shared_from_this<BaseType>;
using StorageType = typename std::aligned_storage<sizeof(ParentType)>::type;
public:
//! Saves the state of some type inheriting from enable_shared_from_this
/*! @param ptr The raw pointer held by the shared_ptr */
inline EnableSharedStateHelper( T * ptr ) :
itsPtr( static_cast<ParentType *>( ptr ) ),
itsState()
{
std::memcpy( &itsState, itsPtr, sizeof(ParentType) );
}
//! Restores the state of the held pointer
inline ~EnableSharedStateHelper()
{
std::memcpy( itsPtr, &itsState, sizeof(ParentType) );
}
private:
ParentType * itsPtr;
StorageType itsState;
}; // end EnableSharedStateHelper
//! Performs loading and construction for a shared pointer that is derived from
//! std::enable_shared_from_this
/*! @param ar The archive
@param ptr Raw pointer held by the shared_ptr
@internal */
template <class Archive, class T> inline
void loadAndConstructSharedPtr( Archive & ar, T * ptr, std::true_type /* has_shared_from_this */ )
{
memory_detail::LoadAndConstructLoadWrapper<Archive, T> loadWrapper( ptr );
memory_detail::EnableSharedStateHelper<T> state( ptr );
// let the user perform their initialization
ar( CEREAL_NVP_("data", loadWrapper) );
}
//! Performs loading and construction for a shared pointer that is NOT derived from
//! std::enable_shared_from_this
/*! This is the typical case, where we simply pass the load wrapper to the
archive.
@param ar The archive
@param ptr Raw pointer held by the shared_ptr
@internal */
template <class Archive, class T> inline
void loadAndConstructSharedPtr( Archive & ar, T * ptr, std::false_type /* has_shared_from_this */ )
{
memory_detail::LoadAndConstructLoadWrapper<Archive, T> loadWrapper( ptr );
ar( CEREAL_NVP_("data", loadWrapper) );
}
} // end namespace memory_detail
//! Saving std::shared_ptr for non polymorphic types
template <class Archive, class T> inline
typename std::enable_if<!std::is_polymorphic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::shared_ptr<T> const & ptr )
{
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( ptr )) );
}
//! Loading std::shared_ptr, case when no user load and construct for non polymorphic types
template <class Archive, class T> inline
typename std::enable_if<!std::is_polymorphic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::shared_ptr<T> & ptr )
{
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( ptr )) );
}
//! Saving std::weak_ptr for non polymorphic types
template <class Archive, class T> inline
typename std::enable_if<!std::is_polymorphic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::weak_ptr<T> const & ptr )
{
auto const sptr = ptr.lock();
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( sptr )) );
}
//! Loading std::weak_ptr for non polymorphic types
template <class Archive, class T> inline
typename std::enable_if<!std::is_polymorphic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::weak_ptr<T> & ptr )
{
std::shared_ptr<T> sptr;
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( sptr )) );
ptr = sptr;
}
//! Saving std::unique_ptr for non polymorphic types
template <class Archive, class T, class D> inline
typename std::enable_if<!std::is_polymorphic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unique_ptr<T, D> const & ptr )
{
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( ptr )) );
}
//! Loading std::unique_ptr, case when user provides load_and_construct for non polymorphic types
template <class Archive, class T, class D> inline
typename std::enable_if<!std::is_polymorphic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::unique_ptr<T, D> & ptr )
{
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper( ptr )) );
}
// ######################################################################
// Pointer wrapper implementations follow below
//! Saving std::shared_ptr (wrapper implementation)
/*! @internal */
template <class Archive, class T> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, memory_detail::PtrWrapper<std::shared_ptr<T> const &> const & wrapper )
{
auto & ptr = wrapper.ptr;
uint32_t id = ar.registerSharedPointer( ptr.get() );
ar( CEREAL_NVP_("id", id) );
if( id & detail::msb_32bit )
{
ar( CEREAL_NVP_("data", *ptr) );
}
}
//! Loading std::shared_ptr, case when user load and construct (wrapper implementation)
/*! @internal */
template <class Archive, class T> inline
typename std::enable_if<traits::has_load_and_construct<T, Archive>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, memory_detail::PtrWrapper<std::shared_ptr<T> &> & wrapper )
{
auto & ptr = wrapper.ptr;
uint32_t id;
ar( CEREAL_NVP_("id", id) );
if( id & detail::msb_32bit )
{
// Storage type for the pointer - since we can't default construct this type,
// we'll allocate it using std::aligned_storage and use a custom deleter
using ST = typename std::aligned_storage<sizeof(T)>::type;
// Valid flag - set to true once construction finishes
// This prevents us from calling the destructor on
// uninitialized data.
auto valid = std::make_shared<bool>( false );
// Allocate our storage, which we will treat as
// uninitialized until initialized with placement new
ptr.reset( reinterpret_cast<T *>( new ST() ),
[=]( T * t )
{
if( valid )
t->~T();
delete reinterpret_cast<ST *>( t );
} );
// Register the pointer
ar.registerSharedPointer( id, ptr );
// Perform the actual loading and allocation
memory_detail::loadAndConstructSharedPtr( ar, ptr.get(), typename ::cereal::traits::has_shared_from_this<T>::type() );
// Mark pointer as valid (initialized)
*valid = true;
}
else
ptr = std::static_pointer_cast<T>(ar.getSharedPointer(id));
}
//! Loading std::shared_ptr, case when no user load and construct (wrapper implementation)
/*! @internal */
template <class Archive, class T> inline
typename std::enable_if<!traits::has_load_and_construct<T, Archive>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, memory_detail::PtrWrapper<std::shared_ptr<T> &> & wrapper )
{
auto & ptr = wrapper.ptr;
uint32_t id;
ar( CEREAL_NVP_("id", id) );
if( id & detail::msb_32bit )
{
ptr.reset( detail::Construct<T, Archive>::load_andor_construct() );
ar.registerSharedPointer( id, ptr );
ar( CEREAL_NVP_("data", *ptr) );
}
else
ptr = std::static_pointer_cast<T>(ar.getSharedPointer(id));
}
//! Saving std::unique_ptr (wrapper implementation)
/*! @internal */
template <class Archive, class T, class D> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, memory_detail::PtrWrapper<std::unique_ptr<T, D> const &> const & wrapper )
{
auto & ptr = wrapper.ptr;
// unique_ptr get one byte of metadata which signifies whether they were a nullptr
// 0 == nullptr
// 1 == not null
if( !ptr )
ar( CEREAL_NVP_("valid", uint8_t(0)) );
else
{
ar( CEREAL_NVP_("valid", uint8_t(1)) );
ar( CEREAL_NVP_("data", *ptr) );
}
}
//! Loading std::unique_ptr, case when user provides load_and_construct (wrapper implementation)
/*! @internal */
template <class Archive, class T, class D> inline
typename std::enable_if<traits::has_load_and_construct<T, Archive>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, memory_detail::PtrWrapper<std::unique_ptr<T, D> &> & wrapper )
{
uint8_t isValid;
ar( CEREAL_NVP_("valid", isValid) );
auto & ptr = wrapper.ptr;
if( isValid )
{
// Storage type for the pointer - since we can't default construct this type,
// we'll allocate it using std::aligned_storage
using ST = typename std::aligned_storage<sizeof(T)>::type;
// Allocate storage - note the ST type so that deleter is correct if
// an exception is thrown before we are initialized
std::unique_ptr<ST> stPtr( new ST() );
// Use wrapper to enter into "data" nvp of ptr_wrapper
memory_detail::LoadAndConstructLoadWrapper<Archive, T> loadWrapper( reinterpret_cast<T *>( stPtr.get() ) );
// Initialize storage
ar( CEREAL_NVP_("data", loadWrapper) );
// Transfer ownership to correct unique_ptr type
ptr.reset( reinterpret_cast<T *>( stPtr.release() ) );
}
else
ptr.reset( nullptr );
}
//! Loading std::unique_ptr, case when no load_and_construct (wrapper implementation)
/*! @internal */
template <class Archive, class T, class D> inline
typename std::enable_if<!traits::has_load_and_construct<T, Archive>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, memory_detail::PtrWrapper<std::unique_ptr<T, D> &> & wrapper )
{
uint8_t isValid;
ar( CEREAL_NVP_("valid", isValid) );
auto & ptr = wrapper.ptr;
if( isValid )
{
ptr.reset( detail::Construct<T, Archive>::load_andor_construct() );
ar( CEREAL_NVP_( "data", *ptr ) );
}
else
{
ptr.reset( nullptr );
}
}
} // namespace cereal
#endif // CEREAL_TYPES_SHARED_PTR_HPP_
/*! \file polymorphic.hpp
\brief Support for pointers to polymorphic base classes
\ingroup OtherTypes */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_POLYMORPHIC_HPP_
#define CEREAL_TYPES_POLYMORPHIC_HPP_
#include <cereal/cereal.hpp>
#include <cereal/types/memory.hpp>
#include <cereal/details/util.hpp>
#include <cereal/details/helpers.hpp>
#include <cereal/details/traits.hpp>
#include <cereal/details/polymorphic_impl.hpp>
#ifdef _MSC_VER
#define STATIC_CONSTEXPR static
#else
#define STATIC_CONSTEXPR static constexpr
#endif
//! Registers a derived polymorphic type with cereal
/*! Polymorphic types must be registered before smart
pointers to them can be serialized. Note that base
classes do not need to be registered.
Registering a type lets cereal know how to properly
serialize it when a smart pointer to a base object is
used in conjunction with a derived class.
This assumes that all relevant archives have also
previously been registered. Registration for archives
is usually done in the header file in which they are
defined. This means that type registration needs to
happen after specific archives to be used are included.
It is recommended that type registration be done in
the header file in which the type is declared.
Registration can also be placed in a source file,
but this may require the use of the
CEREAL_REGISTER_DYNAMIC_INIT macro (see below).
Registration may be called repeatedly for the same
type in different translation units to add support
for additional archives if they are not initially
available (included and registered).
When building serialization support as a DLL on
Windows, registration must happen in the header file.
On Linux and Mac things should still work properly
if placed in a source file, but see the above comments
on registering in source files.
Polymorphic support in cereal requires RTTI to be
enabled */
#define CEREAL_REGISTER_TYPE(T) \
namespace cereal { \
namespace detail { \
template <> \
struct binding_name<T> \
{ \
STATIC_CONSTEXPR char const * name() { return #T; } \
}; \
} } /* end namespaces */ \
CEREAL_BIND_TO_ARCHIVES(T)
//! Registers a polymorphic type with cereal, giving it a
//! user defined name
/*! In some cases the default name used with
CEREAL_REGISTER_TYPE (the name of the type) may not be
suitable. This macro allows any name to be associated
with the type. The name should be unique */
#define CEREAL_REGISTER_TYPE_WITH_NAME(T, Name) \
namespace cereal { \
namespace detail { \
template <> \
struct binding_name<T> \
{ STATIC_CONSTEXPR char const * name() { return Name; } }; \
} } /* end namespaces */ \
CEREAL_BIND_TO_ARCHIVES(T)
//! Adds a way to force initialization of a translation unit containing
//! calls to CEREAL_REGISTER_TYPE
/*! In C++, dynamic initialization of non-local variables of a translation
unit may be deferred until "the first odr-use of any function or variable
defined in the same translation unit as the variable to be initialized."
Informally, odr-use means that your program takes the address of or binds
a reference directly to an object, which must have a definition.
Since polymorphic type support in cereal relies on the dynamic
initialization of certain global objects happening before
serialization is performed, it is important to ensure that something
from files that call CEREAL_REGISTER_TYPE is odr-used before serialization
occurs, otherwise the registration will never take place. This may often
be the case when serialization is built as a shared library external from
your main program.
This macro, with any name of your choosing, should be placed into the
source file that contains calls to CEREAL_REGISTER_TYPE.
Its counterpart, CEREAL_FORCE_DYNAMIC_INIT, should be placed in its
associated header file such that it is included in the translation units
(source files) in which you want the registration to appear.
@relates CEREAL_FORCE_DYNAMIC_INIT
*/
#define CEREAL_REGISTER_DYNAMIC_INIT(LibName) \
namespace cereal { \
namespace detail { \
void CEREAL_DLL_EXPORT dynamic_init_dummy_##LibName() {} \
} } /* end namespaces */
//! Forces dynamic initialization of polymorphic support in a
//! previously registered source file
/*! @sa CEREAL_REGISTER_DYNAMIC_INIT
See CEREAL_REGISTER_DYNAMIC_INIT for detailed explanation
of how this macro should be used. The name used should
match that for CEREAL_REGISTER_DYNAMIC_INIT. */
#define CEREAL_FORCE_DYNAMIC_INIT(LibName) \
namespace cereal { \
namespace detail { \
void dynamic_init_dummy_##LibName(); \
} /* end detail */ \
namespace { \
void dynamic_init_##LibName() \
{ \
::cereal::detail::dynamic_init_dummy_##LibName(); \
} \
} } /* end namespaces */
#ifdef _MSC_VER
#undef CONSTEXPR
#endif
namespace cereal
{
namespace polymorphic_detail
{
//! Error message used for unregistered polymorphic types
/*! @internal */
#define UNREGISTERED_POLYMORPHIC_EXCEPTION(LoadSave, Name) \
throw cereal::Exception("Trying to " #LoadSave " an unregistered polymorphic type (" + Name + ").\n" \
"Make sure your type is registered with CEREAL_REGISTER_TYPE and that the archive " \
"you are using was included (and registered with CEREAL_REGISTER_ARCHIVE) prior to calling CEREAL_REGISTER_TYPE.\n" \
"If your type is already registered and you still see this error, you may need to use CEREAL_REGISTER_DYNAMIC_INIT.");
//! Get an input binding from the given archive by deserializing the type meta data
/*! @internal */
template<class Archive> inline
typename ::cereal::detail::InputBindingMap<Archive>::Serializers getInputBinding(Archive & ar, std::uint32_t const nameid)
{
// If the nameid is zero, we serialized a null pointer
if(nameid == 0)
{
typename ::cereal::detail::InputBindingMap<Archive>::Serializers emptySerializers;
emptySerializers.shared_ptr = [](void*, std::shared_ptr<void> & ptr) { ptr.reset(); };
emptySerializers.unique_ptr = [](void*, std::unique_ptr<void, ::cereal::detail::EmptyDeleter<void>> & ptr) { ptr.reset( nullptr ); };
return emptySerializers;
}
std::string name;
if(nameid & detail::msb_32bit)
{
ar( CEREAL_NVP_("polymorphic_name", name) );
ar.registerPolymorphicName(nameid, name);
}
else
name = ar.getPolymorphicName(nameid);
auto & bindingMap = detail::StaticObject<detail::InputBindingMap<Archive>>::getInstance().map;
auto binding = bindingMap.find(name);
if(binding == bindingMap.end())
UNREGISTERED_POLYMORPHIC_EXCEPTION(load, name)
return binding->second;
}
//! Serialize a shared_ptr if the 2nd msb in the nameid is set, and if we can actually construct the pointee
/*! This check lets us try and skip doing polymorphic machinery if we can get away with
using the derived class serialize function
Note that on MSVC 2013 preview, is_default_constructible<T> returns true for abstract classes with
default constructors, but on clang/gcc this will return false. So we also need to check for that here.
@internal */
template<class Archive, class T> inline
typename std::enable_if<(traits::is_default_constructible<T>::value
|| traits::has_load_and_construct<T, Archive>::value)
&& !std::is_abstract<T>::value, bool>::type
serialize_wrapper(Archive & ar, std::shared_ptr<T> & ptr, std::uint32_t const nameid)
{
if(nameid & detail::msb2_32bit)
{
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper(ptr)) );
return true;
}
return false;
}
//! Serialize a unique_ptr if the 2nd msb in the nameid is set, and if we can actually construct the pointee
/*! This check lets us try and skip doing polymorphic machinery if we can get away with
using the derived class serialize function
@internal */
template<class Archive, class T, class D> inline
typename std::enable_if<(traits::is_default_constructible<T>::value
|| traits::has_load_and_construct<T, Archive>::value)
&& !std::is_abstract<T>::value, bool>::type
serialize_wrapper(Archive & ar, std::unique_ptr<T, D> & ptr, std::uint32_t const nameid)
{
if(nameid & detail::msb2_32bit)
{
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper(ptr)) );
return true;
}
return false;
}
//! Serialize a shared_ptr if the 2nd msb in the nameid is set, and if we can actually construct the pointee
/*! This case is for when we can't actually construct the shared pointer. Normally this would be caught
as the pointer itself is serialized, but since this is a polymorphic pointer, if we tried to serialize
the pointer we'd end up back here recursively. So we have to catch the error here as well, if
this was a polymorphic type serialized by its proper pointer type
@internal */
template<class Archive, class T> inline
typename std::enable_if<(!traits::is_default_constructible<T>::value
&& !traits::has_load_and_construct<T, Archive>::value)
|| std::is_abstract<T>::value, bool>::type
serialize_wrapper(Archive &, std::shared_ptr<T> &, std::uint32_t const nameid)
{
if(nameid & detail::msb2_32bit)
throw cereal::Exception("Cannot load a polymorphic type that is not default constructable and does not have a load_and_construct function");
return false;
}
//! Serialize a unique_ptr if the 2nd msb in the nameid is set, and if we can actually construct the pointee
/*! This case is for when we can't actually construct the unique pointer. Normally this would be caught
as the pointer itself is serialized, but since this is a polymorphic pointer, if we tried to serialize
the pointer we'd end up back here recursively. So we have to catch the error here as well, if
this was a polymorphic type serialized by its proper pointer type
@internal */
template<class Archive, class T, class D> inline
typename std::enable_if<(!traits::is_default_constructible<T>::value
&& !traits::has_load_and_construct<T, Archive>::value)
|| std::is_abstract<T>::value, bool>::type
serialize_wrapper(Archive &, std::unique_ptr<T, D> &, std::uint32_t const nameid)
{
if(nameid & detail::msb2_32bit)
throw cereal::Exception("Cannot load a polymorphic type that is not default constructable and does not have a load_and_construct function");
return false;
}
} // polymorphic_detail
// ######################################################################
// Pointer serialization for polymorphic types
//! Saving std::shared_ptr for polymorphic types, abstract
template <class Archive, class T> inline
typename std::enable_if<std::is_polymorphic<T>::value && std::is_abstract<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::shared_ptr<T> const & ptr )
{
if(!ptr)
{
// same behavior as nullptr in memory implementation
ar( CEREAL_NVP_("polymorphic_id", std::uint32_t(0)) );
return;
}
std::type_info const & ptrinfo = typeid(*ptr.get());
// ptrinfo can never be equal to T info since we can't have an instance
// of an abstract object
// this implies we need to do the lookup
auto & bindingMap = detail::StaticObject<detail::OutputBindingMap<Archive>>::getInstance().map;
auto binding = bindingMap.find(std::type_index(ptrinfo));
if(binding == bindingMap.end())
UNREGISTERED_POLYMORPHIC_EXCEPTION(save, cereal::util::demangle(ptrinfo.name()))
binding->second.shared_ptr(&ar, ptr.get());
}
//! Saving std::shared_ptr for polymorphic types, not abstract
template <class Archive, class T> inline
typename std::enable_if<std::is_polymorphic<T>::value && !std::is_abstract<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::shared_ptr<T> const & ptr )
{
if(!ptr)
{
// same behavior as nullptr in memory implementation
ar( CEREAL_NVP_("polymorphic_id", std::uint32_t(0)) );
return;
}
std::type_info const & ptrinfo = typeid(*ptr.get());
static std::type_info const & tinfo = typeid(T);
if(ptrinfo == tinfo)
{
// The 2nd msb signals that the following pointer does not need to be
// cast with our polymorphic machinery
ar( CEREAL_NVP_("polymorphic_id", detail::msb2_32bit) );
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper(ptr)) );
return;
}
auto & bindingMap = detail::StaticObject<detail::OutputBindingMap<Archive>>::getInstance().map;
auto binding = bindingMap.find(std::type_index(ptrinfo));
if(binding == bindingMap.end())
UNREGISTERED_POLYMORPHIC_EXCEPTION(save, cereal::util::demangle(ptrinfo.name()))
binding->second.shared_ptr(&ar, ptr.get());
}
//! Loading std::shared_ptr for polymorphic types
template <class Archive, class T> inline
typename std::enable_if<std::is_polymorphic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::shared_ptr<T> & ptr )
{
std::uint32_t nameid;
ar( CEREAL_NVP_("polymorphic_id", nameid) );
// Check to see if we can skip all of this polymorphism business
if(polymorphic_detail::serialize_wrapper(ar, ptr, nameid))
return;
auto binding = polymorphic_detail::getInputBinding(ar, nameid);
std::shared_ptr<void> result;
binding.shared_ptr(&ar, result);
ptr = std::static_pointer_cast<T>(result);
}
//! Saving std::weak_ptr for polymorphic types
template <class Archive, class T> inline
typename std::enable_if<std::is_polymorphic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::weak_ptr<T> const & ptr )
{
auto const sptr = ptr.lock();
ar( CEREAL_NVP_("locked_ptr", sptr) );
}
//! Loading std::weak_ptr for polymorphic types
template <class Archive, class T> inline
typename std::enable_if<std::is_polymorphic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::weak_ptr<T> & ptr )
{
std::shared_ptr<T> sptr;
ar( CEREAL_NVP_("locked_ptr", sptr) );
ptr = sptr;
}
//! Saving std::unique_ptr for polymorphic types that are abstract
template <class Archive, class T, class D> inline
typename std::enable_if<std::is_polymorphic<T>::value && std::is_abstract<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unique_ptr<T, D> const & ptr )
{
if(!ptr)
{
// same behavior as nullptr in memory implementation
ar( CEREAL_NVP_("polymorphic_id", std::uint32_t(0)) );
return;
}
std::type_info const & ptrinfo = typeid(*ptr.get());
// ptrinfo can never be equal to T info since we can't have an instance
// of an abstract object
// this implies we need to do the lookup
auto & bindingMap = detail::StaticObject<detail::OutputBindingMap<Archive>>::getInstance().map;
auto binding = bindingMap.find(std::type_index(ptrinfo));
if(binding == bindingMap.end())
UNREGISTERED_POLYMORPHIC_EXCEPTION(save, cereal::util::demangle(ptrinfo.name()))
binding->second.unique_ptr(&ar, ptr.get());
}
//! Saving std::unique_ptr for polymorphic types, not abstract
template <class Archive, class T, class D> inline
typename std::enable_if<std::is_polymorphic<T>::value && !std::is_abstract<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unique_ptr<T, D> const & ptr )
{
if(!ptr)
{
// same behavior as nullptr in memory implementation
ar( CEREAL_NVP_("polymorphic_id", std::uint32_t(0)) );
return;
}
std::type_info const & ptrinfo = typeid(*ptr.get());
static std::type_info const & tinfo = typeid(T);
if(ptrinfo == tinfo)
{
// The 2nd msb signals that the following pointer does not need to be
// cast with our polymorphic machinery
ar( CEREAL_NVP_("polymorphic_id", detail::msb2_32bit) );
ar( CEREAL_NVP_("ptr_wrapper", memory_detail::make_ptr_wrapper(ptr)) );
return;
}
auto & bindingMap = detail::StaticObject<detail::OutputBindingMap<Archive>>::getInstance().map;
auto binding = bindingMap.find(std::type_index(ptrinfo));
if(binding == bindingMap.end())
UNREGISTERED_POLYMORPHIC_EXCEPTION(save, cereal::util::demangle(ptrinfo.name()))
binding->second.unique_ptr(&ar, ptr.get());
}
//! Loading std::unique_ptr, case when user provides load_and_construct for polymorphic types
template <class Archive, class T, class D> inline
typename std::enable_if<std::is_polymorphic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::unique_ptr<T, D> & ptr )
{
std::uint32_t nameid;
ar( CEREAL_NVP_("polymorphic_id", nameid) );
// Check to see if we can skip all of this polymorphism business
if(polymorphic_detail::serialize_wrapper(ar, ptr, nameid))
return;
auto binding = polymorphic_detail::getInputBinding(ar, nameid);
std::unique_ptr<void, ::cereal::detail::EmptyDeleter<void>> result;
binding.unique_ptr(&ar, result);
ptr.reset(static_cast<T*>(result.release()));
}
#undef UNREGISTERED_POLYMORPHIC_EXCEPTION
} // namespace cereal
#endif // CEREAL_TYPES_POLYMORPHIC_HPP_
/*! \file queue.hpp
\brief Support for types found in \<queue\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_QUEUE_HPP_
#define CEREAL_TYPES_QUEUE_HPP_
#include <cereal/details/helpers.hpp>
#include <queue>
// The default container for queue is deque, so let's include that too
#include <cereal/types/deque.hpp>
namespace cereal
{
namespace queue_detail
{
//! Allows access to the protected container in queue
/*! @internal */
template <class T, class C> inline
C const & container( std::queue<T, C> const & queue )
{
struct H : public std::queue<T, C>
{
static C const & get( std::queue<T, C> const & q )
{
return q.*(&H::c);
}
};
return H::get( queue );
}
//! Allows access to the protected container in priority queue
/*! @internal */
template <class T, class C, class Comp> inline
C const & container( std::priority_queue<T, C, Comp> const & priority_queue )
{
struct H : public std::priority_queue<T, C, Comp>
{
static C const & get( std::priority_queue<T, C, Comp> const & pq )
{
return pq.*(&H::c);
}
};
return H::get( priority_queue );
}
//! Allows access to the protected comparator in priority queue
/*! @internal */
template <class T, class C, class Comp> inline
Comp const & comparator( std::priority_queue<T, C, Comp> const & priority_queue )
{
struct H : public std::priority_queue<T, C, Comp>
{
static Comp const & get( std::priority_queue<T, C, Comp> const & pq )
{
return pq.*(&H::comp);
}
};
return H::get( priority_queue );
}
}
//! Saving for std::queue
template <class Archive, class T, class C> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::queue<T, C> const & queue )
{
ar( CEREAL_NVP_("container", queue_detail::container( queue )) );
}
//! Loading for std::queue
template <class Archive, class T, class C> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::queue<T, C> & queue )
{
C container;
ar( CEREAL_NVP_("container", container) );
queue = std::queue<T, C>( std::move( container ) );
}
//! Saving for std::priority_queue
template <class Archive, class T, class C, class Comp> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::priority_queue<T, C, Comp> const & priority_queue )
{
ar( CEREAL_NVP_("comparator", queue_detail::comparator( priority_queue )) );
ar( CEREAL_NVP_("container", queue_detail::container( priority_queue )) );
}
//! Loading for std::priority_queue
template <class Archive, class T, class C, class Comp> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::priority_queue<T, C, Comp> & priority_queue )
{
Comp comparator;
ar( CEREAL_NVP_("comparator", comparator) );
C container;
ar( CEREAL_NVP_("container", container) );
priority_queue = std::priority_queue<T, C, Comp>( comparator, std::move( container ) );
}
} // namespace cereal
#endif // CEREAL_TYPES_QUEUE_HPP_
/*! \file set.hpp
\brief Support for types found in \<set\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_SET_HPP_
#define CEREAL_TYPES_SET_HPP_
#include <cereal/cereal.hpp>
#include <set>
namespace cereal
{
namespace set_detail
{
//! @internal
template <class Archive, class SetT> inline
void save( Archive & ar, SetT const & set )
{
ar( make_size_tag( static_cast<size_type>(set.size()) ) );
for( const auto & i : set )
ar( i );
}
//! @internal
template <class Archive, class SetT> inline
void load( Archive & ar, SetT & set )
{
size_type size;
ar( make_size_tag( size ) );
set.clear();
auto hint = set.begin();
for( size_type i = 0; i < size; ++i )
{
typename SetT::key_type key;
ar( key );
#ifdef CEREAL_OLDER_GCC
hint = set.insert( hint, std::move( key ) );
#else // NOT CEREAL_OLDER_GCC
hint = set.emplace_hint( hint, std::move( key ) );
#endif // NOT CEREAL_OLDER_GCC
}
}
}
//! Saving for std::set
template <class Archive, class K, class C, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::set<K, C, A> const & set )
{
set_detail::save( ar, set );
}
//! Loading for std::set
template <class Archive, class K, class C, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::set<K, C, A> & set )
{
set_detail::load( ar, set );
}
//! Saving for std::multiset
template <class Archive, class K, class C, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::multiset<K, C, A> const & multiset )
{
set_detail::save( ar, multiset );
}
//! Loading for std::multiset
template <class Archive, class K, class C, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::multiset<K, C, A> & multiset )
{
set_detail::load( ar, multiset );
}
} // namespace cereal
#endif // CEREAL_TYPES_SET_HPP_
/*! \file stack.hpp
\brief Support for types found in \<stack\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_STACK_HPP_
#define CEREAL_TYPES_STACK_HPP_
#include <cereal/cereal.hpp>
#include <stack>
// The default container for stack is deque, so let's include that too
#include <cereal/types/deque.hpp>
namespace cereal
{
namespace stack_detail
{
//! Allows access to the protected container in stack
template <class T, class C> inline
C const & container( std::stack<T, C> const & stack )
{
struct H : public std::stack<T, C>
{
static C const & get( std::stack<T, C> const & s )
{
return s.*(&H::c);
}
};
return H::get( stack );
}
}
//! Saving for std::stack
template <class Archive, class T, class C> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::stack<T, C> const & stack )
{
ar( CEREAL_NVP_("container", stack_detail::container( stack )) );
}
//! Loading for std::stack
template <class Archive, class T, class C> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::stack<T, C> & stack )
{
C container;
ar( CEREAL_NVP_("container", container) );
stack = std::stack<T, C>( std::move( container ) );
}
} // namespace cereal
#endif // CEREAL_TYPES_STACK_HPP_
/*! \file string.hpp
\brief Support for types found in \<string\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_STRING_HPP_
#define CEREAL_TYPES_STRING_HPP_
#include <cereal/cereal.hpp>
#include <string>
namespace cereal
{
//! Serialization for basic_string types, if binary data is supported
template<class Archive, class CharT, class Traits, class Alloc> inline
typename std::enable_if<traits::is_output_serializable<BinaryData<CharT>, Archive>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME(Archive & ar, std::basic_string<CharT, Traits, Alloc> const & str)
{
// Save number of chars + the data
ar( make_size_tag( static_cast<size_type>(str.size()) ) );
ar( binary_data( str.data(), str.size() * sizeof(CharT) ) );
}
//! Serialization for basic_string types, if binary data is supported
template<class Archive, class CharT, class Traits, class Alloc> inline
typename std::enable_if<traits::is_input_serializable<BinaryData<CharT>, Archive>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME(Archive & ar, std::basic_string<CharT, Traits, Alloc> & str)
{
size_type size;
ar( make_size_tag( size ) );
str.resize(static_cast<std::size_t>(size));
ar( binary_data( const_cast<CharT *>( str.data() ), static_cast<std::size_t>(size) * sizeof(CharT) ) );
}
} // namespace cereal
#endif // CEREAL_TYPES_STRING_HPP_
/*! \file tuple.hpp
\brief Support for types found in \<tuple\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_TUPLE_HPP_
#define CEREAL_TYPES_TUPLE_HPP_
#include <cereal/cereal.hpp>
#include <tuple>
namespace cereal
{
namespace tuple_detail
{
//! Creates a c string from a sequence of characters
/*! The c string created will alwas be prefixed by "tuple_element"
Based on code from: http://stackoverflow/a/20973438/710791
@internal */
template<char...Cs>
struct char_seq_to_c_str
{
static const int size = 14;// Size of array for the word: tuple_element
typedef const char (&arr_type)[sizeof...(Cs) + size];
static const char str[sizeof...(Cs) + size];
};
// the word tuple_element plus a number
//! @internal
template<char...Cs>
const char char_seq_to_c_str<Cs...>::str[sizeof...(Cs) + size] =
{'t','u','p','l','e','_','e','l','e','m','e','n','t', Cs..., '\0'};
//! Converts a number into a sequence of characters
/*! @tparam Q The quotient of dividing the original number by 10
@tparam R The remainder of dividing the original number by 10
@tparam C The sequence built so far
@internal */
template <size_t Q, size_t R, char ... C>
struct to_string_impl
{
using type = typename to_string_impl<Q/10, Q%10, R+'0', C...>::type;
};
//! Base case with no quotient
/*! @internal */
template <size_t R, char ... C>
struct to_string_impl<0, R, C...>
{
using type = char_seq_to_c_str<R+'0', C...>;
};
//! Generates a c string for a given index of a tuple
/*! Example use:
@code{cpp}
tuple_element_name<3>::c_str();// returns "tuple_element3"
@endcode
@internal */
template<size_t T>
struct tuple_element_name
{
using type = typename to_string_impl<T/10, T%10>::type;
static const typename type::arr_type c_str(){ return type::str; };
};
// unwinds a tuple to save it
//! @internal
template <size_t Height>
struct serialize
{
template <class Archive, class ... Types> inline
static void apply( Archive & ar, std::tuple<Types...> & tuple )
{
serialize<Height - 1>::template apply( ar, tuple );
ar( CEREAL_NVP_(tuple_element_name<Height - 1>::c_str(),
std::get<Height - 1>( tuple )) );
}
};
// Zero height specialization - nothing to do here
//! @internal
template <>
struct serialize<0>
{
template <class Archive, class ... Types> inline
static void apply( Archive &, std::tuple<Types...> & )
{ }
};
}
//! Serializing for std::tuple
template <class Archive, class ... Types> inline
void CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar, std::tuple<Types...> & tuple )
{
tuple_detail::serialize<std::tuple_size<std::tuple<Types...>>::value>::template apply( ar, tuple );
}
} // namespace cereal
#endif // CEREAL_TYPES_TUPLE_HPP_
/*! \file unordered_map.hpp
\brief Support for types found in \<unordered_map\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_UNORDERED_MAP_HPP_
#define CEREAL_TYPES_UNORDERED_MAP_HPP_
#include <cereal/cereal.hpp>
#include <unordered_map>
namespace cereal
{
namespace unordered_map_detail
{
//! @internal
template <class Archive, class MapT> inline
void save( Archive & ar, MapT const & map )
{
ar( make_size_tag( static_cast<size_type>(map.size()) ) );
for( const auto & i : map )
ar( make_map_item(i.first, i.second) );
}
//! @internal
template <class Archive, class MapT> inline
void load( Archive & ar, MapT & map )
{
size_type size;
ar( make_size_tag( size ) );
map.clear();
map.reserve( static_cast<std::size_t>( size ) );
for( size_type i = 0; i < size; ++i )
{
typename MapT::key_type key;
typename MapT::mapped_type value;
ar( make_map_item(key, value) );
map.emplace( std::move( key ), std::move( value ) );
}
}
}
//! Saving for std::unordered_map
template <class Archive, class K, class T, class H, class KE, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unordered_map<K, T, H, KE, A> const & unordered_map )
{
unordered_map_detail::save( ar, unordered_map );
}
//! Loading for std::unordered_map
template <class Archive, class K, class T, class H, class KE, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::unordered_map<K, T, H, KE, A> & unordered_map )
{
unordered_map_detail::load( ar, unordered_map );
}
//! Saving for std::unordered_multimap
template <class Archive, class K, class T, class H, class KE, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unordered_multimap<K, T, H, KE, A> const & unordered_multimap )
{
unordered_map_detail::save( ar, unordered_multimap );
}
//! Loading for std::unordered_multimap
template <class Archive, class K, class T, class H, class KE, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::unordered_multimap<K, T, H, KE, A> & unordered_multimap )
{
unordered_map_detail::load( ar, unordered_multimap );
}
} // namespace cereal
#endif // CEREAL_TYPES_UNORDERED_MAP_HPP_
/*! \file unordered_set.hpp
\brief Support for types found in \<unordered_set\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_UNORDERED_SET_HPP_
#define CEREAL_TYPES_UNORDERED_SET_HPP_
#include <cereal/cereal.hpp>
#include <unordered_set>
namespace cereal
{
namespace unordered_set_detail
{
//! @internal
template <class Archive, class SetT> inline
void save( Archive & ar, SetT const & set )
{
ar( make_size_tag( static_cast<size_type>(set.size()) ) );
for( const auto & i : set )
ar( i );
}
//! @internal
template <class Archive, class SetT> inline
void load( Archive & ar, SetT & set )
{
size_type size;
ar( make_size_tag( size ) );
set.clear();
set.reserve( static_cast<std::size_t>( size ) );
for( size_type i = 0; i < size; ++i )
{
typename SetT::key_type key;
ar( key );
set.emplace( std::move( key ) );
}
}
}
//! Saving for std::unordered_set
template <class Archive, class K, class H, class KE, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unordered_set<K, H, KE, A> const & unordered_set )
{
unordered_set_detail::save( ar, unordered_set );
}
//! Loading for std::unordered_set
template <class Archive, class K, class H, class KE, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::unordered_set<K, H, KE, A> & unordered_set )
{
unordered_set_detail::load( ar, unordered_set );
}
//! Saving for std::unordered_multiset
template <class Archive, class K, class H, class KE, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::unordered_multiset<K, H, KE, A> const & unordered_multiset )
{
unordered_set_detail::save( ar, unordered_multiset );
}
//! Loading for std::unordered_multiset
template <class Archive, class K, class H, class KE, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::unordered_multiset<K, H, KE, A> & unordered_multiset )
{
unordered_set_detail::load( ar, unordered_multiset );
}
} // namespace cereal
#endif // CEREAL_TYPES_UNORDERED_SET_HPP_
/*! \file utility.hpp
\brief Support for types found in \<utility\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_UTILITY_HPP_
#define CEREAL_TYPES_UTILITY_HPP_
#include <cereal/cereal.hpp>
#include <utility>
namespace cereal
{
//! Serializing for std::pair
template <class Archive, class T1, class T2> inline
void CEREAL_SERIALIZE_FUNCTION_NAME( Archive & ar, std::pair<T1, T2> & pair )
{
ar( CEREAL_NVP_("first", pair.first),
CEREAL_NVP_("second", pair.second) );
}
} // namespace cereal
#endif // CEREAL_TYPES_UTILITY_HPP_
/*! \file vector.hpp
\brief Support for types found in \<vector\>
\ingroup STLSupport */
/*
Copyright (c) 2014, Randolph Voorhies, Shane Grant
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
* Neither the name of cereal nor the
names of its contributors may be used to endorse or promote products
derived from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL RANDOLPH VOORHIES OR SHANE GRANT BE LIABLE FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef CEREAL_TYPES_VECTOR_HPP_
#define CEREAL_TYPES_VECTOR_HPP_
#include <cereal/cereal.hpp>
#include <vector>
namespace cereal
{
//! Serialization for std::vectors of arithmetic (but not bool) using binary serialization, if supported
template <class Archive, class T, class A> inline
typename std::enable_if<traits::is_output_serializable<BinaryData<T>, Archive>::value
&& std::is_arithmetic<T>::value && !std::is_same<T, bool>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::vector<T, A> const & vector )
{
ar( make_size_tag( static_cast<size_type>(vector.size()) ) ); // number of elements
ar( binary_data( vector.data(), vector.size() * sizeof(T) ) );
}
//! Serialization for std::vectors of arithmetic (but not bool) using binary serialization, if supported
template <class Archive, class T, class A> inline
typename std::enable_if<traits::is_input_serializable<BinaryData<T>, Archive>::value
&& std::is_arithmetic<T>::value && !std::is_same<T, bool>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::vector<T, A> & vector )
{
size_type vectorSize;
ar( make_size_tag( vectorSize ) );
vector.resize( static_cast<std::size_t>( vectorSize ) );
ar( binary_data( vector.data(), static_cast<std::size_t>( vectorSize ) * sizeof(T) ) );
}
//! Serialization for non-arithmetic vector types
template <class Archive, class T, class A> inline
typename std::enable_if<!traits::is_output_serializable<BinaryData<T>, Archive>::value
|| !std::is_arithmetic<T>::value, void>::type
CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::vector<T, A> const & vector )
{
ar( make_size_tag( static_cast<size_type>(vector.size()) ) ); // number of elements
for(auto && v : vector)
ar( v );
}
//! Serialization for non-arithmetic vector types
template <class Archive, class T, class A> inline
typename std::enable_if<!traits::is_input_serializable<BinaryData<T>, Archive>::value
|| !std::is_arithmetic<T>::value, void>::type
CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::vector<T, A> & vector )
{
size_type size;
ar( make_size_tag( size ) );
vector.resize( static_cast<std::size_t>( size ) );
for(auto && v : vector)
ar( v );
}
//! Serialization for bool vector types
template <class Archive, class A> inline
void CEREAL_SAVE_FUNCTION_NAME( Archive & ar, std::vector<bool, A> const & vector )
{
ar( make_size_tag( static_cast<size_type>(vector.size()) ) ); // number of elements
for(auto && v : vector)
ar( static_cast<bool>(v) );
}
//! Serialization for bool vector types
template <class Archive, class A> inline
void CEREAL_LOAD_FUNCTION_NAME( Archive & ar, std::vector<bool, A> & vector )
{
size_type size;
ar( make_size_tag( size ) );
vector.resize( static_cast<std::size_t>( size ) );
for(auto && v : vector)
{
bool b;
ar( b );
v = b;
}
}
} // namespace cereal
#endif // CEREAL_TYPES_VECTOR_HPP_
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment