Skip to content
Projects
Groups
Snippets
Help
Loading...
Help
Support
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
E
eos
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Issues
0
Issues
0
List
Boards
Labels
Milestones
Merge Requests
0
Merge Requests
0
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Analytics
Analytics
CI / CD
Repository
Value Stream
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
Richard Torenvliet
eos
Commits
4ec5e910
Commit
4ec5e910
authored
Jan 07, 2017
by
Patrik Huber
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Initial version of keyframe selection and weighted mean fusion
parent
3aa61677
Changes
3
Show whitespace changes
Inline
Side-by-side
Showing
3 changed files
with
260 additions
and
0 deletions
+260
-0
CMakeLists.txt
CMakeLists.txt
+1
-0
doc/namespaces.doxygen
doc/namespaces.doxygen
+5
-0
include/eos/video/Keyframe.hpp
include/eos/video/Keyframe.hpp
+254
-0
No files found.
CMakeLists.txt
View file @
4ec5e910
...
...
@@ -98,6 +98,7 @@ set(HEADERS
${
CMAKE_CURRENT_SOURCE_DIR
}
/include/eos/render/Rasterizer.hpp
${
CMAKE_CURRENT_SOURCE_DIR
}
/include/eos/render/FragmentShader.hpp
${
CMAKE_CURRENT_SOURCE_DIR
}
/include/eos/render/detail/Vertex.hpp
${
CMAKE_CURRENT_SOURCE_DIR
}
/include/eos/video/Keyframe.hpp
)
add_library
(
eos INTERFACE
)
...
...
doc/namespaces.doxygen
View file @
4ec5e910
...
...
@@ -22,3 +22,8 @@
* @namespace eos::render
* @brief Software rendering and texture extraction functionality.
*/
/**
* @namespace eos::video
* @brief Video keyframe extraction and fusion.
*/
include/eos/video/Keyframe.hpp
0 → 100644
View file @
4ec5e910
/*
* eos - A 3D Morphable Model fitting library written in modern C++11/14.
*
* File: include/eos/video/Keyframe.hpp
*
* Copyright 2016, 2017 Patrik Huber
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#pragma once
#ifndef KEYFRAME_HPP_
#define KEYFRAME_HPP_
#include "eos/fitting/FittingResult.hpp"
#include "eos/fitting/RenderingParameters.hpp"
#include "eos/morphablemodel/Blendshape.hpp"
#include "eos/morphablemodel/MorphableModel.hpp"
#include "opencv2/core/core.hpp"
namespace
eos
{
namespace
video
{
/**
* @brief A keyframe selected by the fitting algorithm.
*
* Contains the original frame, all necessary fitting parameters, and a score.
*/
struct
Keyframe
{
float
score
;
// = 0.0f?
cv
::
Mat
frame
;
fitting
::
FittingResult
fitting_result
;
};
/**
* @brief A keyframe selection that selects keyframes according to yaw pose and score.
*
* Separates the +-90 yaw pose range into 20 intervals (i.e. 90 to 70, ..., -10 to 10, ...), and puts frames
* into each bin, until full. Replaces keyframes with better frames if the score is higher than that of
* current keyframes.
*
* The yaw pose bins are currently hard-coded (9 bins, 20 intervals).
*/
struct
PoseBinningKeyframeSelector
{
public:
PoseBinningKeyframeSelector
(
int
frames_per_bin
=
2
)
:
frames_per_bin
(
frames_per_bin
)
{
bins
.
resize
(
num_yaw_bins
);
};
bool
try_add
(
float
frame_score
,
cv
::
Mat
image
,
const
fitting
::
FittingResult
&
fitting_result
)
{
// Determine whether to add or not:
auto
yaw_angle
=
glm
::
degrees
(
glm
::
yaw
(
fitting_result
.
rendering_parameters
.
get_rotation
()));
auto
idx
=
angle_to_index
(
yaw_angle
);
bool
add_frame
=
false
;
if
(
bins
[
idx
].
size
()
<
frames_per_bin
)
// always add when we don't have enough frames
add_frame
=
true
;
// definitely adding - we wouldn't have to go through the for-loop on the next line.
for
(
auto
&&
f
:
bins
[
idx
])
{
if
(
frame_score
>
f
.
score
)
add_frame
=
true
;
}
if
(
!
add_frame
)
{
return
false
;
}
// Add the keyframe:
bins
[
idx
].
push_back
(
video
::
Keyframe
{
frame_score
,
image
,
fitting_result
});
if
(
bins
[
idx
].
size
()
>
frames_per_bin
)
{
// need to remove the lowest one:
std
::
sort
(
std
::
begin
(
bins
[
idx
]),
std
::
end
(
bins
[
idx
]),
[](
const
auto
&
lhs
,
const
auto
&
rhs
)
{
return
lhs
.
score
>
rhs
.
score
;
});
bins
[
idx
].
resize
(
frames_per_bin
);
}
return
true
;
};
// Returns the keyframes as a vector.
std
::
vector
<
Keyframe
>
get_keyframes
()
const
{
std
::
vector
<
Keyframe
>
keyframes
;
for
(
auto
&&
b
:
bins
)
{
for
(
auto
&&
f
:
b
)
{
keyframes
.
push_back
(
f
);
}
}
return
keyframes
;
};
private:
using
BinContent
=
std
::
vector
<
Keyframe
>
;
std
::
vector
<
BinContent
>
bins
;
const
int
num_yaw_bins
=
9
;
int
frames_per_bin
;
// Converts a given yaw angle to an index in the internal bins vector.
// Assumes 9 bins and 20 intervals.
static
std
::
size_t
angle_to_index
(
float
yaw_angle
)
{
if
(
yaw_angle
<=
-
70.
f
)
return
0
;
if
(
yaw_angle
<=
-
50.
f
)
return
1
;
if
(
yaw_angle
<=
-
30.
f
)
return
2
;
if
(
yaw_angle
<=
-
10.
f
)
return
3
;
if
(
yaw_angle
<=
10.
f
)
return
4
;
if
(
yaw_angle
<=
30.
f
)
return
5
;
if
(
yaw_angle
<=
50.
f
)
return
6
;
if
(
yaw_angle
<=
70.
f
)
return
7
;
return
8
;
};
};
/**
* @brief Extracts texture from each keyframe and merges them using a weighted mean.
*
* Uses the view angle as weighting.
*
* Note 1: Would be nice to eventually return a 4-channel texture map, with a sensible weight in the 4th
* channel (i.e. the max of all weights for a given pixel).
*
* Note 2: On each call to this, it generates all isomaps. This is quite time-consuming (and we could compute
* the weighted mean incrementally). But caching them is not trivial (maybe with a hashing or comparing the
* cv::Mat frame data* member?).
* On the other hand, for the more complex merging techniques (super-res, involving ceres, or a median
* cost-func?), there might be no caching possible anyway and we will recompute the merged isomap from scratch
* each time anyway, but not by first extracting all isomaps - instead we would just do a lookup of the
* required pixel value(s) in the original image.
*
* // struct KeyframeMerger {};
*
* @param[in] keyframes The keyframes that will be merged.
* @param[in] morphable_model The Morphable Model with which the keyframes have been fitted.
* @param[in] blendshapes The blendshapes with which the keyframes have been fitted.
* @return Merged texture map (isomap), 3-channel uchar.
*/
cv
::
Mat
merge_weighted_mean
(
const
std
::
vector
<
Keyframe
>&
keyframes
,
const
morphablemodel
::
MorphableModel
&
morphable_model
,
const
std
::
vector
<
morphablemodel
::
Blendshape
>&
blendshapes
)
{
assert
(
keyframes
.
size
()
>=
1
);
using
cv
::
Mat
;
using
std
::
vector
;
vector
<
Mat
>
isomaps
;
for
(
const
auto
&
frame_data
:
keyframes
)
{
const
Mat
shape
=
morphable_model
.
get_shape_model
().
draw_sample
(
frame_data
.
fitting_result
.
pca_shape_coefficients
)
+
morphablemodel
::
to_matrix
(
blendshapes
)
*
Mat
(
frame_data
.
fitting_result
.
blendshape_coefficients
);
const
auto
mesh
=
morphablemodel
::
sample_to_mesh
(
shape
,
{},
morphable_model
.
get_shape_model
().
get_triangle_list
(),
{},
morphable_model
.
get_texture_coordinates
());
const
Mat
affine_camera_matrix
=
fitting
::
get_3x4_affine_camera_matrix
(
frame_data
.
fitting_result
.
rendering_parameters
,
frame_data
.
frame
.
cols
,
frame_data
.
frame
.
rows
);
const
Mat
isomap
=
render
::
extract_texture
(
mesh
,
affine_camera_matrix
,
frame_data
.
frame
,
true
,
render
::
TextureInterpolation
::
NearestNeighbour
,
1024
);
isomaps
.
push_back
(
isomap
);
}
// Now do the actual merging:
Mat
r
=
Mat
::
zeros
(
isomaps
[
0
].
rows
,
isomaps
[
0
].
cols
,
CV_32FC1
);
Mat
g
=
Mat
::
zeros
(
isomaps
[
0
].
rows
,
isomaps
[
0
].
cols
,
CV_32FC1
);
Mat
b
=
Mat
::
zeros
(
isomaps
[
0
].
rows
,
isomaps
[
0
].
cols
,
CV_32FC1
);
Mat
accumulated_weight
=
Mat
::
zeros
(
isomaps
[
0
].
rows
,
isomaps
[
0
].
cols
,
CV_32FC1
);
// Currently, this just uses the weights in the alpha channel for weighting - they contain only the
// view-angle. We should use the keyframe's score as well. Plus the area of the source triangle.
for
(
auto
&&
isomap
:
isomaps
)
{
vector
<
Mat
>
channels
;
cv
::
split
(
isomap
,
channels
);
// channels[0].convertTo(channels[0], CV_32FC1);
// We could avoid this explicit temporary, but then we'd have to convert both matrices
// to CV_32FC1 first - and manually multiply with 1/255. Not sure which one is faster.
// If we do it like this, the add just becomes '+=' - so I think it's fine like this.
// The final formula is:
// b += chan_0 * alpha * 1/255; (and the same for g and r respectively)
Mat
weighted_b
,
weighted_g
,
weighted_r
;
// // we scale the weights from [0, 255] to [0, 1]:
cv
::
multiply
(
channels
[
0
],
channels
[
3
],
weighted_b
,
1
/
255.0
,
CV_32FC1
);
cv
::
multiply
(
channels
[
1
],
channels
[
3
],
weighted_g
,
1
/
255.0
,
CV_32FC1
);
cv
::
multiply
(
channels
[
2
],
channels
[
3
],
weighted_r
,
1
/
255.0
,
CV_32FC1
);
b
+=
weighted_b
;
g
+=
weighted_g
;
r
+=
weighted_r
;
channels
[
3
].
convertTo
(
channels
[
3
],
CV_32FC1
);
// needed for the '/ 255.0f' below to work
cv
::
add
(
accumulated_weight
,
channels
[
3
]
/
255.0
f
,
accumulated_weight
,
cv
::
noArray
(),
CV_32FC1
);
}
b
=
b
.
mul
(
1.0
/
(
accumulated_weight
));
// divide by number of frames used too?
g
=
g
.
mul
(
1.0
/
(
accumulated_weight
));
r
=
r
.
mul
(
1.0
/
(
accumulated_weight
));
// Let's return accumulated_weight too: Normalise by num_isomaps * 255 (=maximum weight)
// This sets the returned weight to the average from all the isomaps. Maybe the maximum would make more
// sense? => Not returning anything for now.
// accumulated_weight = (accumulated_weight / isomaps.size()) * 255;
Mat
merged_isomap
;
cv
::
merge
({
b
,
g
,
r
},
merged_isomap
);
merged_isomap
.
convertTo
(
merged_isomap
,
CV_8UC3
);
return
merged_isomap
;
};
/**
* @brief Computes the variance of laplacian of the given image or patch.
*
* This should compute the variance of the laplacian of a given image or patch, according to the 'LAPV'
* algorithm of Pech 2000.
* It is used as a focus or blurriness measure, i.e. to assess the quality of the given patch.
*
* @param[in] image Input image or patch.
* @return The computed variance of laplacian score.
*/
double
variance_of_laplacian
(
const
cv
::
Mat
&
image
)
{
cv
::
Mat
laplacian
;
cv
::
Laplacian
(
image
,
laplacian
,
CV_64F
);
cv
::
Scalar
mu
,
sigma
;
cv
::
meanStdDev
(
laplacian
,
mu
,
sigma
);
double
focus_measure
=
sigma
.
val
[
0
]
*
sigma
.
val
[
0
];
return
focus_measure
;
};
}
/* namespace video */
}
/* namespace eos */
#endif
/* KEYFRAME_HPP_ */
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment